Role of Fault
Injection in Digital
Design for Space

Hipolito Guzman Miranda
Miguel A. Aguirre

David Merodio Codinachs
Agustin Fernandez-Leon SEFUW
16-18th September 2014

1. Integrating Fault Injection in the Digital
Design Flow: Benefits and Howto

2. A Fault Injection Technique oriented to
SRAM FPGAs

Integrating Fault Injection
In the Digital Design
Flow:

Benefits and Howto

SEFUW, 16-18th September 2014

Fault Injection, In theory:

Big number (total sensitivity)
Detect most sensitive regions
Hierarchical analysis

Verification of inserted protections
Detect collapsed TMRs

Defects in reset strategy

Quality of workloads

Fault diagnosis

Fault Injection, In practice:

ONE DOES NIIT*SIMPLY ;

AL

r\ .

_ USEFAULT INIEI}'I'I[IN

What’s the problem?

With fault injection you can “identify if your
circuit output is sensitive to SEUs in a given
Flip-flop, for a given workload”

Duh!... that is probably why | have a Flip-flop
there in the first place!!

If I'm actually using the Flip-flop, the output will
be sensitive to SEUs there

So, what do we do?

Think ENVIRONMENT, not just CIRCUIT
e All circuits are at least a bit sensitive to radiation effects

e Probably you can live with some SEUs once in a while,
but some others will break your circuit (SEFI)

e \What is expected from your circuit? What can (and
cannot) be tolerated?

Can we answer those two questions in a systematic way?

How to do it?

Divide your circuit FFs into:

e Configuration
o baudrate, IO standards, ..., configuration registers
iIn general

e Control-flow
o FSMs, data/cycles counters, ...

e Datapath

o the real data you are processing

1. Configuration FFs

Most likely to cause SEFI

Should be first choice of FFs to protect
o TMR/EDAC!...

These should be clear from the functional specs!
o Configuration options and modes

For each of these, it's interesting to ask:

o do we really need this configurability?
o do we really need to store it on a Flip-flop?

Less configurability -> less SEFIs

You can (and should!) Inject Faults there
o But expect wrong behaviour

2. Control-flow FFs

e Faults here may break your circuit in

different ways
o Wrong data at output
o Wrong timing of output
o Hang / SEFI
e ‘when others =>" controversial but helpful
o You must still know what you are doing

e How will you reset the FSMs?

o Inadequate reset strategy will be seen in the fault

injection campaign (unresettable SEU -> SEFI)
o Global reset easy (but sensitive to SETSs)

3. Datapath FFs

e |east critical
e Faults in processed data can sometimes be

corrected at higher level
o EDAC/ECC/Hamming/...

e Cycle-by-cycle comparison is too demanding
e Cook your own comparison model!

o You will need a flexible Fault Injection tool that gives
you more information than damage/no-damage

o ldeally, total faulty output sequence (or diff with
golden)

What we did

e Design an 802.15.4 (Zigbee) baseband

transmitter
o For intra-satellite communications

o Avoid inserting any protections in the sections where
SEUs did not matter

From MAC E pe
Layer Frame [©°0K0IS| Bit to Symbol to 0-QPSK

— e 1

adaptation Symbol chip Q Modulation

How we did it

e Reduced configurability

©)

l.e: FRAME_SIZE became a GENERIC

e Consistent use of ‘when others =>"In FSMs
e Cooked our own comparison model to know
If outputs were acceptable

O
O

O

Dump all differences for all cycles in a ~8.9GB log
Python postprocessing

Detect if data was aligned to expected (13 clk cycles
per sample)

Considered unaligned data unrecoverable

Aligned erroneous data was put through a Matlab
model of the receiver

The Results

While cycle-by-cycle comparison suggests
system is very sensitive...

83.96%
Pulse_shaping_|

51.91% | data

37.32%

33.47% 80.92%
- @

Bit2symb Symb2chip

85.65%

Fadapt

The Results (think ENVIRONMENT!)

... the receiver can recover correct data from
“‘wrong” transmitted frames:

0.07%
Pulse_shaping_|
13.36% |_data
o . -
logic
28.79% 0.00%
—— -

30.10% 33.74% Upsampling_|

‘ l N 0.00%
Bit2symb Symb2chip 0.00%
-
Upsampling_Q 010%
Q_data
— - -

Fadapt Qdelay

Pulse_shaping_Q

Question time

Now it's time to talk :)

Fault Injection was performed with FT-
Unshades2 and yes, you can use it too :)

hipolito@aqie.esi.us.es
http://ftu.us.es

mailto:hipolito@gie.esi.us.es
mailto:hipolito@gie.esi.us.es
http://ftu.us.es
http://ftu.us.es

A Fault injection technique
oriented to SRAM-FPGAs.

Hipdlito Guzman-Miranda, Javier Barrientos-Rojas,
Miguel A. Aguirre

Universidad de Sevilla

Dpto. Ingenieria Electronica. Escuela Superior e Ingenieria
C/Camino de los Descubrimientos s/n

41092 Sevilla

= Motivation

 SRAM-FPGAs are very attractive solution for space
applications

e Radiation environments affects them in different way
than other electronic circuits, even when they
implement common digital circuits.

 We offer TOOLS towards the emulation of the behavior
of the SRAM-FPGA and the behavior of the circuit in
fault in CBs.

e Check if scrubbing strategies are correct and enough

 The number of configuration points is relevant

* Functional fault assessment and configuration:fault
assessment are strongly related.

Summary

l. Introduction
Il. Fault injection in SRAM-FPGA

Ill. The FT-UNSHADES2 approach
IV. Experience, conclusions and future work

* SRAM FPGA is an attractive solution for aerospace
electronic systems.

* Fault injection techniques represent a good
solution for emulating the radiation environment.

* The functional approach consists of analyzing the
reliability making injections over USER REGISTERS:
* Dynamic testing
e Technology independent

* The present approach targets the FPGA configured
with the functional design:
* Target the FPGA technology
* Inject over the CONFIGURATION BITS
* Dynamic testing?

‘i‘ |. Introduction

= Using Run-Time reconfiguration for
FAULT INJECTION

* Faults are propagated through the logic to PRIMARY OUTPUTS

* The injection is performed using the configuration circuit

* The injection is made modifying the THE CONFIGURATION BITS
instead of REGISTER CONTENTS.

Modify the
design structure

Implemented

Injection over Injection over
user registers Config memory

Modify the actual
register content

Configured
elements

g Il. Fault injection over SRAM-FPGAS

* Target technology is the SRAM-FPGA
* Injection over the CONFIGURATION BITS

* Objective:
* Check if faults propagate to the logic

* Check if redundancy and scrubbing protections are
enough

* Check for simultaneous affection of several clock
domains

* Define PAR rules for design reliability improvement

* Few approaches: FLIPPER (Politecnico di Milano),
STAR/RoRa (Politecnico di Torino), BYU injector
(from test board and using Xilinx procedures)

=1ll. The FT-UNSHADES?2 approach
e Reuse the FT-UNSHADES2 hardware platform
* The principles:

A fault on one configuration bit will not propagate to
any other confguration bit (Is it totally true?)

A fault in a configuration bit can propagate to the
circuit logic

* Make the DYNAMICAL injection
* Technique: inject and repair

Reset Injection Repair

M “ Comparison ﬂ End of Run

Execution Run Discrepancy found

E Essential bits

* Essential bits are defined here as those bits
associated with the circuitry of the design, and are
a subset of the device configuration bits.

* |[f an essential bit is upset, it changes the design
circuitry. However, the upset might not affect the
function of the design.

* They are calculated from BitGen utility (v 13.4)

* From the essential bits file we calculate the
sentitive bits map

Configuration

Bits Essential bits

Criti

g FT-UNSHADESZ2
FPGA mode

e Same injection technique than
ASIC mode

e Detects critical and non-critical
bits

* Analysis of the internal
propagation of the faults to
user logic

* Fast injection
* Dynamic or time zero analysis
* VIRTEX 5

Select CB to inject
(Frame, bit)

Initial
Reset

Execute
Application
until Tinj

Read-Modify-Write
the FPGA Frame

Resume
Application

", ek
Compare

ith gold ey
7| Discr

Classify
Repair

W\
A N
\

Equal?

= FT-UNSHADESZ2 in debug mode

(ITC'99, b01)

http://ftu.us...s/B01/debug/ x\n Mundial Baloncesto 2014: ... x 4+ © - g

Al ¥ A8 =

€ il @ ftu.us.es/uff/des gns/B01/debug c B' Goog!

& Log out detection esa

| designs / BO1 / debug /

| Terminal {3} Run ‘{Hierarchy 4 Debug (J Repeat |n Reboot |0 Reload E3 Close
No task in progress
i B i 4 ® « > - o~ Q Q

0 1 2 3 4 S 6 7 8 9 10 " 12 13 14 15 16 17 18 19
0000... -0000... <0000... 0000... <0000... 0000... ~0000... -0000... - 0000... 0000... ~0000... -0000... 0000... 0000... <0000... <0000... -0000... 0000... -0000...

Input vectors.

GOLD output vectors 80000000 00000000 80000000 00000000 80000000 0000... - 8000... 00000000 C000... 80000000
SEU output vectors 80000000 00000000 80000000 00000000 80000000 0000... +8000... 00000000
[[]Bit_config 1 1
1] 1 0
[[] stato_FSM 01 80 20 04 01 8l 08 02 80 20 04 01 10 20 04 01 10 20 04 01
00 80 20 04 01 80 08 02 80 20 04 01 10 00
step 10

atep 5 injection

writeb Bit_config 0 .

0 propagation
step 5

restart

precondition failed: device must be configured

wait a moment...

input/b0l.bit... Ok

3378266 bytes sent v

1'@ e 1

A1) N\
\ =ty N

19"

T

V. Conclusions

* There are faults that do not affect the circuit

* There are faults that do not affect the logic
behaviour

* Faults in CBs can be propagated to user logic

* Data have to be repaired using traditional techniques
(TMR, EDAC,...)

* |f one fault in CB propagates to other CBs:
* Global scrubbing is required
* Global reset is required

Can we compute the cross section of these faults?

Thank you. Q & A

aguirre@gie.esi.us.es

hipolito@gie.esi.us.es

New users are welcome to FT-Unshades2 !!

http://ftu.us.es

12

