

UFF

Table of Contents
About This Document . 1

Project Preparation . 2

Pin File . 4

Ucf File . 4

Bit and LL Files . 6

VCD and Dat Files . 9

Appendix A . 14

First Steps on UFF. 18

UFF Workspace. 18

Setting Up The Design . 19

Campaign Runner . 23

Hardware Debugger . 24

Closing The Tool . 27

Working with partial bitstreams . 28

Design preparation for partial reconfiguration . 28

Example design . 28

Adding multiple bitstreams to a user project . 29

Working with multiple bitstreams in the debugger . 30

About This Document
This manual is a guide about how to use the UFF (User Friendly Framework, is executed as an
extension of an HTTP server such as Apache. This enables it to be present "in the cloud" as a service
provided by a web server) web server interface. But firstly, the user should to get all files needed to
be able to do a campaign (A campaign is an automatic test of an emulated circuit during which a
number of errors will be injected in the SEU target FPGA to an user-defined set of registers in an
user-defined set of cycles. Then its output will be compared to that of the other where no errors
were introduced) using the FTU2 (Fault Tolerant UNiversidad de Sevilla HArdware DEbugging
System 2) platform. These files are described in the first chapter called "Project Preparation". For a
greater knowledge about how to do an injection, how to debug the design behavior before injection
and after injection and also to analyze all the results that the TNT (TNT is the suite of Test aNalysis
Tools for the FTU system) system tool can get, see the chapter called "First Steps On UFF".

In this guide some tools implemented in TNT are used to get certain files from the UFF web
interface. Therefore, it is recommended to request a user account to access the application. Such
petition can be made via the contacts listed on the website: FTU2 SITE.

For users who prefer to work through a console there is the possibility of using TNT Scripting Guide
(tnt-book3.7) that is available in the website: FTU2 DOC.

In the second chapter it explains the basic use about the UFF web server interface to be able to run
a campaign with Fault Injection (FI) over the users design. From the files obtained in the previous
chapter, firstly it is necessary to make a setting up the design and then the campaign is carried out.
The user can also debug the design using the hardware debugger that FTU2 offers.

This is the user manual for the 3.7 version of the UFF web interface as it exists at the end of 2017.

1

http://ftu.us.es
http://freyja.us.es/ftu/

Project Preparation
This chapter describes all files that we need for the FTU2 tool use. Firstly, we have to explain our
work environment which made this guide. Finally, it appears a list with all file descriptions.

We are going to work using the ISE 14.7 tool from Xilinx to create the example project and we use
the ISim (simulator tool) from Xilinx too. Our preferred language to design is VHDL. Designs have to
fit in a XC5VFX70T device (Universidad de Sevilla FPGA model available) and it is limited to 512
I/Os. We work under a Linux SO distribution (CentOS 6.6 version).

The goal is to get three files mainly: the bitstream (.bit), the logic location (.ll) and the I/O vectors
(.dat), without these files it is not possible to run a campaign. In addition, there are other files that
are needed to create some of the files mentioned above.

These files must be written by the user:

name_design.vhd

It’s the design source code (in VHDL language)

tb_name_design.vhd

The Test Bench file is needed to simulate the design and get the VCD (stimuli file)

name_design.pin

A pin file is a declarative file for the clock, inputs, bidirectional and output signals of the target
design. This file represents the order in which the pins will be implemented in the target FPGA.

These files are generated by a tool:

name_design.ucf

The User Constraints File is an ASCII file specifying constraints on the logical design. These
constraints affect how the logical design is implemented in the target device.

name_design.vcd

Value Change Dump is an ASCII-based format for dumpfiles. By simulating the previously
created design, the user may generate this file with the values of all I/O pins during simulation.

name_design.bit

A bitstream is a stream of data that contains location information for logic on a FPGA. A
bitstream configures the target FPGAs to emulate any circuit.

name_design.ll

The logic location file, which indicates the bitstream position of storage elements such as latches,
flip-flops, and IOB inputs and outputs.

name_design.dat

The VCD file contains the set of stimuli and from this data it’s possible to create the FTU2 I/O
vectors file.

So let’s go to get all previously described files. We are going to use an example design in this

2

manual that will be used in the next chapter too. It’s a simple 8 bit counter and you can see its
source code in Appendix A. In this manual, all files will be called “counter8bit.*”.

First, log in into the UFF SITE:

And then, the user must create a project:

3

http://ftu.us.es/uff/login/

Pin File
To create the pin file, the user can utilize any text editor to write the inputs, bidirectional and
output signals of the target design. For this example, the pin file is shown below:

--control
clk
--input
rst_high
enable
--bidir
--output
data_out 7 0

Save the file to get the first file called “counter8bit.pin”.

Ucf File
To get the UCF, it is necessary to add the pin file to the project, click over your project and then click
over “Files” tab:

Now, upload the pin file:

4

Then click over “Create new file” tab and select the “User Constraint File (.ucf)” option:

Select the correct FPGA model and generate the UCF:

You have already the second file called “counter8bit.ucf”. It is necessary to download the UCF to
add it into the ISE project, so select the UCF and click over “Download selected files” tab:

5

Bit and LL Files
This guide is developed using the ISE 14.7 tool from Xilinx to create the example project and we use
the ISim (simulator tool) from Xilinx too. The preferred language to design is VHDL. Designs have to
fit in a XC5VFX70T device (Universidad de Sevilla FPGA model available) and it is limited to 512
I/Os. All these tools work under a Linux SO distribution (CentOS 6.6 version).

Now it is time to obtain the bitstream. When a new project in ISE is created, select the settings as
picture indicates:

Firstly, add the design source code and the UCF into the project:

6

Before getting the bitstream, it’s necessary to select some options into the “Process Properties”
menu according to using the FTU2 tool. These options are shown in the following pictures:

7

8

Finally, run “Generate Programming File” to get the bitstream:

Check that the process finish without errors:

Now there are in the user’s project folder two of the target files: “counter8bit.bit” and
“counter8bit.ll”.

VCD and Dat Files
The last target file that is missing is the DAT file but before to get it is necessary to generate the VCD

9

file using the ISim tool. So add the test bench into the project and run the simulator:

The VCD file is obtained by some commands running on the console of the ISim tool:

restart
vcd dumpfile <design>.vcd
vcd dumpvars -m <inst> -l 2

Note: <inst> is the name of the instance given for the highest level module. Normally is in the
design call in the simulation framework.

10

Run the simulation up to the desired time; once it has finished type:

vcd dumpflush
quit

11

12

Now the workload file is in the user’s project folder called “counter8bit.vcd”, containing the set of
stimuli. Using this file in conjunction with the previously created PIN file it is the way to generate
the DAT file with a tool from the UFF web server. Firstly, it is necessary to upload the VCD file to
UFF as did it previously with the UCF file:

Then click over “Create new file” tab and select the “FPGA Vector File (.dat) from VCD dump (.vcd)”
option:

13

Verify that the options are correct and generate the DAT file:

So now the last file called “counter8bit.dat” is in the user’s project folder. Finally, add the BIT and
LL files to the UFF web server. At this point, the user has a complete set of files to emulate the
Design Under Test. It is time to set up an FT-UNSHADES design.

Appendix A

Design Source Code:

14

counter8bit.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

entity counter8bit is
 port (
 rst_high: in std_logic;
 clk: in std_logic;
 enable: in std_logic;
 data_out: out std_logic_vector (7 downto 0)
);
end counter8bit;

architecture counter of counter8bit is

 signal reg, p_reg: unsigned (7 downto 0);

 begin

 comb: process (reg, rst_high, enable)
 begin
 if (rst_high = '1') then
 p_reg <= (others => '0');
 elsif (enable = '1') then
 p_reg <= reg + 1;
 else
 p_reg <= reg;
 end if;
 end process;

 data_out <= std_logic_vector(reg);

 sinc: process (clk)
 begin
 if (clk = '1' and clk'event) then
 reg <= p_reg;
 end if;
 end process;

end counter;

Test Bench:

tb_counter8bit.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

15

entity tb_counter8bit is
end tb_counter8bit;

architecture tb_counter of tb_counter8bit is

 component counter8bit
 port(
 rst_high: in std_logic;
 enable: in std_logic;
 clk: in std_logic;
 data_out: out std_logic_vector (7 downto 0)
);
 end component;

 -- Simulation will stop at time = clk_period * num_vectors
 constant clk_period: time := 10 ns;
 constant num_vectors: integer := 285;
 signal ftu_cycle_count: integer := 0;

 -- Inputs
 signal rst_high: std_logic := '1';
 signal enable: std_logic := '0';
 signal clk: std_logic := '1';

 -- Outputs
 signal data_out: std_logic_vector (7 downto 0);

 begin

 -- Stops simulation at desired time.
 -- Compatible with FTU2 and FTU1.
 ftu_endsim: process(clk)
 begin
 if (rising_edge(clk))then
 ftu_cycle_count <= ftu_cycle_count + 1;
 if(ftu_cycle_count = num_vectors)then
 report "Simulation ended succesfully"
 severity failure;
 end if;
 end if;
 end process;

 -- Instantiate the Unit Under Test (UUT)
 uut: counter8bit port map (
 rst_high => rst_high,
 enable => enable,
 clk => clk,
 data_out => data_out
);

16

 -- Clock process definitions
 clk_process: process
 begin
 clk <= '0';
 wait for clk_period/2;
 clk <= '1';
 wait for clk_period/2;
 end process;

 -- Stimulus process
 stim_proc: process
 begin
 -- 4 cycle rst:
 rst_high <= '1';
 wait for clk_period * 4;
 -- 20 cycles of not reset
 rst_high <= '0';
 enable <= '1';
 wait for clk_period * 20;
 -- 5 cycles of not enable
 enable <= '0';
 wait for clk_period * 5;
 -- 256 cycles of enable
 enable <= '1';
 wait for clk_period * 256;
 wait;
 end process;

 -- Enable count only one each 4 clock cycles
 -- enable <= '1' when ftu_cycle_count mod 4 = 0 else '0';

end;

17

First Steps on UFF
This chapter describes in the simplest way possible the most common tasks you’ll perform when
using UFF:

• Preparation of the system for emulation of a project,

• Automatic execution of campaigns,

• Basic usage of the debugger.

UFF Workspace
The UFF workspace is divided as follows:

Top Bar (top side)

Contains widgets to manage the session, including the logout button and controls to change the
distribution of the rest of the panels.

UFF Panel (left side)

Graphical interface for the current task; during most of this document we’ll deal exclusively
with its contents, and most screenshots from here onwards will include only it.

TNT Panel (right side)

Text interface for the current task; most actions we perform will automatically execute
commands that will be visible here. You will never have to write text here, but it allows a much
greater degree of power and flexibility than using the graphical interface.

Status Bar (bottom side)

Status of background tasks. Not relevant unless you’re running a campaign.

18

Setting Up The Design
To do so, login into the UFF website at http://ftu.us.es/uff/login/

Once you log in, the list of available projects appears in the UFF Panel. You can create, delete, or
open existing ones; in this example, we’ll open a simple 8 bit counter called “counter_example”.

When you open a project, you’ll get a message saying "No TNT session"; this means there’s no tntsh
process associated with your user. If you had been working with another project and not closed it
properly, you’d get a "You’re currently working in project Foo" message instead.

Also, a new tab will be added to the UFF panel: labelled "files", it will contain a list of all files in the
current project.

19

http://ftu.us.es/uff/login/

Back to the "counter8bit" tab, press the big, red button that says "Run this one" to proceed; you’ll be
given an additional tab ("Hierarchy") and prompted to select a device on which to emulate the
project.

If the device is available, it will be opened by the current tnt session, and you’ll be allowed to
configure it for emulation.

Configure the Hardware

To prepare the physical device for emulation, we must configure it so the target FPGA is configured
to behave as the desire circuit, and there is a set of values that can be used to feed its inputs. This is
done by loading objects to the motherboard from the main tab:

20

Objects are loaded by dragging them from left (unloaded) to right (loaded) side:

Configure the Software

Once the physical device is configured, we prepare the software side to interface with it. The server
requires a map of the locations of the target FPGA that we want to analyze, that can be loaded from
the Hierarchy tab.

21

Select "load registers from .ll file" and you’ll be provided with a list of options.

Press "Load registers" and the registers will be added to the bit tree; you’ll be able to navigate it as if
it was a file list.

Finally, you must create watches on some registers: having a watch on a register or group of
registers means that the system will keep track of their values as emulation advances. You’ll be able
to request the log of all recorded values at any time as long as the watch exists.

22

Campaign Runner
Now inside the “Run” tab, the user could change the different parameters [1: For more information
refer to the tnt scripting guide.] that are displayed for getting a custom campaign. In this guide the
campaign uses the default values.

When all the parameters are ready, click over the “Run Campaign” button and FTU2 will run the
process in the background. In this case a random injector is selected so the user could select some
options for this kind of injections:

23

After click over the “Run Random Campaign” button, a notification message is displayed on the
bottom. When the “Ready” message is shown, it means that the campaign is completed.

Now it is time to analyze the results. To do that click over the “Files” tab where It appears a new
folder called “Results”.

Inside that folder, the results campaigns that the user performs are saved. Each campaign saves the
results in a folder that is called with the following format: YY-MM-DD-hh-mm-ss

Inside this folder there are several files, [1: For more information refer to the tnt scripting guide.] as
follows:

damages.csv

The results of the full campaign. The contents of this file depend on what information the
FTUNSHADES device was configured to collect.

injections.csv

A description of all runs that were executed during the campaign.

reg_names.txt

A list of all registers where faults were injected during the campaign. The purpose of this file is
to assign a numeric index to each one of the registers, that is used in the injections.csv file: the
first path corresponds to a 0 in, the second to a 1, etc.

run.tcl

A Tcl script that replicates the campaign if executed. It doubles as a log file for what the
campaign actually did.

stats.txt

Some statistics taken while running the actual campaign.

Hardware Debugger
This tool allows to debug the behaviour of the design. So the user could debug the hardware
without implementing it first. As in campaign mode, some preliminary steps are required to use

24

this tool.

25

Starting from the beginning, the user has to open the project, select a FPGA and load the bitstream
and the vectors files. Also it is necessary to load the registers but in this case the user can create
some watches [2: Watches are a way of keeping track of the values of bits as emulation advances.]
to see them in the debug process. In this case, select the “reg” bus and click over the “Watch selected
bits” option. Then click over the “reg” bus and select the bit “0” or LSB (Less Significant Bit) from
the list and click over the “Watch selected bits” option again. The eye symbols mean that watches
are created correctly.

26

Once the watches are established, click over the “Debug” tab. The first step is to reconfigure the
bitstream.

The next step is to reload a vector set to feed the target FPGA.

This example needs five clock cycles to start (four cycles for the reset and one more to initialize the
count).

Then click over the "Step cycles" option by five cycles again to see the correct behaviour of the
counter. For each watch there are two waveforms, the upper waveform is the GOLD reference, this
waveform is not affected for the injections. The bottom waveform is the SEU reference, this
waveform is affected for the injections. If the waveforms are green it means that both outputs are
the same but if the colour is red it means that the outputs have discrepancies.

To generate a manual injection, click over the LSB watch and then change the value to “1”. This
action is like to introduce a bitflip into the design.

Now it is possible to see the discrepancies between the GOLD and the SEU outputs.

Closing The Tool
To exit correctly, click over the button displayed in the following picture and select the three
options in order. Firstly “Release FTUNSHADES device”, secondly “Close TNT session” and thirdly
“Close project”. Finally logout the session.

27

Working with partial bitstreams
This chapter describes how to work with partial reconfiguration bitstreams, keeping user Flip-flop
contents intact. This can be used to work with designs that use partial reconfiguration, either to
optimize FPGA resource utilization, to measure effectivenes of adaptative reconfiguration
strategies, or to test scrubbing schemas.

This chapter describes the processes needed to work with multiple partial bitstreams in FT-
Unshades2:

• Design preparation for partial reconfiguration.

• Adding multiple bitstreams to a user project.

• Working with multiple bitstreams in the debugger.

Design preparation for partial reconfiguration
The user must prepare his/her design for partial reconfiguration. A good document that explains
the creation of partial bitstreams is Xilinx’s XAPP290

Since the partial reconfiguration is done keeping the internal state of the flip-flops, the user must
take care that the flip-flop locations are not changed during the reconfiguration. This can be
manually checked by comparing the flip-flop locations in the initial .ll with their locations in the
.ll of the modified design.

Also, constraints may be added to flip-flop and other element locations, see Xilinx Constraints Guide
for details.

As a result of the design preparation process, the user should have at least one full bitstream for the
initial FPGA configuration and a number of partial bitstreams that can be applied to the full
bitstream to change some of its features.

Example design
An example design for the Virtex-5 FX70T FPGA is provided here. This design contains three .bit
files:

• counter8bit.bit: Full bitstream of an 8-bit counter that counts up

• up2down.bit: Partial bitstream to change counter direction from up to down

• down2up.bit: Partial bitstream to change counter direction from down to up

The design has been created following these steps:

1. Create an 8-bit counter design and perform its FPGA implementation for FT-Unshades2.

2. Modify the 8-bit counter sources so the count is decrementing instead of incrementing.

3. Perform an implementation of the modified design, without overwriting the implementation
files for the first design.

28

https://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/cgd.pdf
http://woden.us.es/docs/ftu2/examples/partialbits/counter/

4. Manually check, in the generated .ll files for both designs, that the flip-flop locations have not
been changed by the implementation processes. In case flip-flop locations have changed,
constraints should be added to the design to assure fixed placement of the locations whose
value must persist between configurations. See Xilinx Constraints Guide for details.

5. Use bitgen to create a partial bitstream to convert the first design into the second (change
counter direction from up to down). See Xilinx’s XAPP290 for details on how to perform these
operations.

6. Optionally, use bitgen to create a partial bitstream to convert the second design into the first
(change counter direction from down to up).

Adding multiple bitstreams to a user project
Adding multiple bistreams to a user project is easy using UFF. The user must just upload all the .bit
files relevant to his/her design. Please note that the two partial bitstreams are smaller in size
compared to the full bitstream:

When opening a device, the user will see all objects that can be loaded into the FT-Unshades2
hardware. In this case, three bitstreams and one vector file:

29

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/cgd.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp290.pdf

The user may load the objects into the hardware, so they are available to be used later. The shell tab
shows the TNT commands generated by the UFF so the user can generate his/her own scripts to
automate this process if needed:

Working with multiple bitstreams in the debugger
The user can load different bitstreams interactively using the hardware debugger, and check the
effects of the reconfiguration in the design behavior by observing the waveforms. If batch
processing is needed, a script can be made using TCL.

The user can define watches to observe the internal state of the design in the hardware debugger:

30

When configuring the FPGA with a bitstream, a drop-down menu lets the user choose which one to
use:

If we configure the FPGA with the full bitstream counter_8bit.bit, we can step some clock cycles
and watch the counter increase:

31

We can then reconfigure the design with the up2down.bit bitstream:

If we advance some clock cycles we can see the count going down, from cycle 11 to 15. The state of
the user flip-flops is not lost when performing the partial reconfiguration:

Finally, we can reconfigure with the down2up.bit bitstream, which will make the counter count
upwards again:

32

If we step the design again, we will see the counter counting up again, from cycle 16 onwards. Note
that the flip-flop contents have been maintained between reconfigurations:

33

	UFF
	Table of Contents
	About This Document
	Project Preparation
	Pin File
	Ucf File
	Bit and LL Files
	VCD and Dat Files
	Appendix A

	First Steps on UFF
	UFF Workspace
	Setting Up The Design
	Campaign Runner
	Hardware Debugger
	Closing The Tool

	Working with partial bitstreams
	Design preparation for partial reconfiguration
	Example design
	Adding multiple bitstreams to a user project
	Working with multiple bitstreams in the debugger

