FTUNSHADES 2

UFF 3.7

Beginner's Guide

UFE

Table of Contents

About This Document
Project Preparation
Pin File
Ucf File
Bit and LL Files
VCD and Dat Files
Appendix A
First Steps on UFF
UFF Workspace
Setting Up The Design
Campaign Runner
Hardware Debugger
Closing The Tool
Working with partial bitstreams
Design preparation for partial reconfiguration
Example design
Adding multiple bitstreams to a user project
Working with multiple bitstreams in the debugger

© OO N

14
18
18
19
23
24
27
28
28
28
29
30

About This Document

This manual is a guide about how to use the UFF (User Friendly Framework, is executed as an
extension of an HTTP server such as Apache. This enables it to be present "in the cloud" as a service
provided by a web server) web server interface. But firstly, the user should to get all files needed to
be able to do a campaign (A campaign is an automatic test of an emulated circuit during which a
number of errors will be injected in the SEU target FPGA to an user-defined set of registers in an
user-defined set of cycles. Then its output will be compared to that of the other where no errors
were introduced) using the FTU2 (Fault Tolerant UNiversidad de Sevilla HArdware DEbugging
System 2) platform. These files are described in the first chapter called "Project Preparation". For a
greater knowledge about how to do an injection, how to debug the design behavior before injection
and after injection and also to analyze all the results that the TNT (TNT is the suite of Test aNalysis
Tools for the FTU system) system tool can get, see the chapter called "First Steps On UFF".

In this guide some tools implemented in TNT are used to get certain files from the UFF web
interface. Therefore, it is recommended to request a user account to access the application. Such
petition can be made via the contacts listed on the website: FTU2 SITE.

For users who prefer to work through a console there is the possibility of using TNT Scripting Guide
(tnt-book3.7) that is available in the website: FTU2 DOC.

In the second chapter it explains the basic use about the UFF web server interface to be able to run
a campaign with Fault Injection (FI) over the users design. From the files obtained in the previous
chapter, firstly it is necessary to make a setting up the design and then the campaign is carried out.
The user can also debug the design using the hardware debugger that FTU2 offers.

This is the user manual for the 3.7 version of the UFF web interface as it exists at the end of 2017.

http://ftu.us.es
http://freyja.us.es/ftu/

Project Preparation

This chapter describes all files that we need for the FTU2 tool use. Firstly, we have to explain our
work environment which made this guide. Finally, it appears a list with all file descriptions.

We are going to work using the ISE 14.7 tool from Xilinx to create the example project and we use
the ISim (simulator tool) from Xilinx too. Our preferred language to design is VHDL. Designs have to
fit in a XC5VFX70T device (Universidad de Sevilla FPGA model available) and it is limited to 512
I/0s. We work under a Linux SO distribution (CentOS 6.6 version).

The goal is to get three files mainly: the bitstream (.bit), the logic location (.11) and the I/O vectors
(.dat), without these files it is not possible to run a campaign. In addition, there are other files that
are needed to create some of the files mentioned above.

These files must be written by the user:

name_design.vhd

It’s the design source code (in VHDL language)

th_name_design.vhd

The Test Bench file is needed to simulate the design and get the VCD (stimuli file)

name_design.pin

A pin file is a declarative file for the clock, inputs, bidirectional and output signals of the target
design. This file represents the order in which the pins will be implemented in the target FPGA.

These files are generated by a tool:

name_design.ucf

The User Constraints File is an ASCII file specifying constraints on the logical design. These
constraints affect how the logical design is implemented in the target device.

name_design.vcd

Value Change Dump is an ASCII-based format for dumpfiles. By simulating the previously
created design, the user may generate this file with the values of all I/O pins during simulation.

name_design.bit

A bitstream is a stream of data that contains location information for logic on a FPGA. A
bitstream configures the target FPGAs to emulate any circuit.

name_design.ll

The logic location file, which indicates the bitstream position of storage elements such as latches,
flip-flops, and IOB inputs and outputs.

name_design.dat

The VCD file contains the set of stimuli and from this data it’s possible to create the FTU2 I/O
vectors file.

So let’s go to get all previously described files. We are going to use an example design in this

manual that will be used in the next chapter too. It’s a simple 8 bit counter and you can see its
source code in Appendix A. In this manual, all files will be called “counter8bit.*”.

First, log in into the UFF SITE:

FTUNSHADES

Test Analysis Tools

User Friendly Framework

User name:

Password:

Users may only be created through the administration page.
You need to enable cookies to log in

Copyright © 2011-2013 Universidad de Sevilla - AICIA - ESA

esa i @

The FTUNSHADES User Friendly Framework v. 1.0
commit: 7aa0dac602019979ca2fbcfed3f51d5374d03c31
Please provide this ID number with all bug reports

And then, the user must create a project:

contadorl6
contador_half7
counter8bit
counter_8bit_withconfig
ejemplo

r-vex

R EERES

zigbee phy tx

Create project

& Project name: counter_example}

http://ftu.us.es/uff/login/

Pin File

To create the pin file, the user can utilize any text editor to write the inputs, bidirectional and
output signals of the target design. For this example, the pin file is shown below:

--control
clk

--input
rst_high
enable
--bidir
--output
data_out 7 0

Save the file to get the first file called “counter8bit.pin”.

Ucf File

To get the UCF, it is necessary to add the pin file to the project, click over your project and then click
over “Files” tab:

(» | ftu.us.es/uff/

Logged as usuario
Manage files

counter_example

No TNT session

Now, upload the pin file:

Logged as usuario ~

Then click over “Create new file” tab and select the “User Constraint File (.ucf)” option:

Logged as usuario~

Create new file ™) Files

O A @ @ bl 4
Plain text file

[| Directory
User Constraint File (.ucf) }

FPGA Vector File (.dat) from VCD dump (.vcd)
Logic Location File (.Il) for configuration bits
Analysis of campaign results

Select the correct FPGA model and generate the UCF:

Generate user constraing file

@ Model of the target FRGA: xcSvix 70t
|1 user provided pin [.pin) file: countersiit.pin

[output file name [optional):

You have already the second file called “counter8bit.ucf”. It is necessary to download the UCF to
add it into the ISE project, so select the UCF and click over “Download selected files” tab:

jged a arie

Download selected
files (inside a .zip)

[] # counter8bit.pin

E @ counter8bit.ucf

Bit and LL Files

This guide is developed using the ISE 14.7 tool from Xilinx to create the example project and we use
the ISim (simulator tool) from Xilinx too. The preferred language to design is VHDL. Designs have to
fit in a XC5VFX70T device (Universidad de Sevilla FPGA model available) and it is limited to 512
I/0s. All these tools work under a Linux SO distribution (CentOS 6.6 version).

Now it is time to obtain the bitstream. When a new project in ISE is created, select the settings as
picture indicates:

> New Project Wizard

Project Settings
Specity device and project properties.

Select the device and design fow for the project

Property Name Value

Evaluation Development Board | None Specified [}
Product Category | an &
Family VirtexS E
Device XCSVEXTOT £
Package FF1136 =
Speed -1 ' N

Top-Lewel Source Type

Synthesis Tool | XST (VHDL/\Verilog) H
Simulator IlSlm (VHD L Verilog) I E2
Preferred Language | vHDL $
Property Specification in Project Rle |Smrl all values 5

Manual Compile Order
VHDL Source Analysis Standard

Enable Message Ritering

Mare Info

| vHDL-93

ar

< Back Cancel

Firstly, add the design source code and the UCF into the project:

File Edit Wiew Project Source Process Tools Window Layout Help
DHI S 206
Design

(4 View: ® §} iImplementation

Hierarchy
counter8hit
= 1 xcSvixT0t-1ff1136

(-1 Y. YT AR AT

x o »pprperrR Rz

counter8bit.vhd

L164.all;
1.all;

entity counterBbit is

Port { rst_high
2 clk : in
- enable
& =- data_out (7| downto
= end counterBbit;
architecture counter of counterBbit is
¥ A signal reg, p_reg: std_logic_vector (7 dowhto 0);
- E) No Processes Running % begin
g Processes: countersbit.ucl % comb: procsss (reg, rst_high, enable)
. bagin
e | & W User Constraints % 19 lrat_nhigh = '1') then
=L pP_re <= (others => '0");
elsif [enable = '1") then
20 [] p_reg <= r=g + 1;
else
_ [5) p_reg <= reg; o
[a] I T v
» Start | ®2 Design |] Fles | [Libraries L Design Summary {out of date) 1 | [F] counterBbit.vhd ®£E counterBhit.uck b4

Before getting the bitstream, it’s necessary to select some

options into the “Process Properties”

menu according to using the FTU2 tool. These options are shown in the following pictures:

File Edit View Project Source Process Tools Window Layout Help

D2 H? s

x o =lprpp R B

=lpRip LI

Design S0E® countersbit.uct S counter8bit.vhd = =T
[View @ {i# Implementation imulation ™ 1 :-
i = library IEEE;
Al IR el S 3 us= IEZEE. LOGIC_1164.all;
H‘ '.'!1 counterBbit 4 use IEEE.NUMERI STD.all;
= () xcSwfx 7011136 5 ’ ’
.. counter8bit - counter [counterBbit.vhd) g ‘-‘“:;:}'E{ ‘[“Ezteﬁf};lﬂ‘- .
. [counterdhit.ucf L 8 elk : in
-1 o aladble H T4
A\ Run ata_out { jownto
& ?ﬁ - end counter8bit;
Rerun All architecture counter of counter8bit is
¥ B s=ignal reg, p_reg: std_logic_vector (7 downto 0);
= I3 Mo Processes Running begin
o Processes: counterBhit - counter Force Process Up-to-Date Eom}l;: process (reg, rst_high, enable)
L Design Summary/Reports egin . o
o PR Oeslgn Utilil:iesw - b Implement Top Module ’ p[{-?L‘L’wt:m_]. bel 5D
L& - L] =
@ UserConstraints Design Goals & Strategies... =lsif (epable = "1 then
H = €2 Synthesize - XST =_|1:;;l’eq <= reg + 1;
{3 Implement Design p reg <= reg;
m Generate Programming File ol i f2 =]
= I Configure Target Device [e][T 0
- Start |=3 Design |\ Fles | [Libraries | I Design Summary (out of date) 3 |E counter8bit.vhd xR counterghit.uck o

Category Switch Name
Configuration Options
Startup Options i
Readback Options -g Binary:
Encryption Options -b
-g |IEEE1532:
-g Compress
-g DebugBitstream:
-g CRC:

Process Properties - General Options

Property Name
Run Design Rules Checker (DRC)
Create Bit File
Create Binary Configuration File
Create ASCIl Configuration File
Create IEEE 1532 Configuration File
Enable BitStream Compression

Enable Debugging of Serial Mode BitStream
Enable Cyclic Redundancy Checking (CR0) ()

Other Bitgen Command Line Options

Value

Lategory
General Options

Startup Options
Readback Options
Encryption Options

Category

General Options
Configuration Options

Readback Options
Encryption Options

Category
General Options
Configuration Options
Startup Options

Encryption Options

Process Properties

Switch Name Property Name
0 ProgPin Configuration Pin Program
-g Donefin: Configuration Pin Done
@ InitPin; Configuration Pin Init
-g CsPin Configuration Pin CS
-g DinPin Configuration Pin Din
g BusyPin: Configuration Pin Busy
-g RAWrPin: Configuration Pin RofWr
g HswapenPin: Configuration Pin HSWAPEN
-g TekPin: JTAG Pin TCK
2 ThiPin: JTAG Pin TDI
-g TdaPin: JTAG Pin TDO
-g TmsPin: JTAG Pin TMS
-g UnusedPin; Unused 108 Pins
@ UseriD: UseriD Code (B Digit Hexadecimal)

-g DO pdateMode:

-g configFaliback

-g TIMER_CFG:

g SelectMAPAbort:
-g BP1_page_size

0 BP1_1st_read

-g OverTempPowerDown:

-g USR_ACCESS

Process Properties - Startup Options *
Switch Name Property Name Value
-g StartUpClk: | FPGA Start-Up Clock [ce =
-g DenePipe: | Enable Intemal Dene Pipe
-g DONE_cycle: | Done (Output Events) | Default (4) |
-g GTS_cycle: Enable Outputs (Output Events) | Default (S) B
-g GWE_cycle: | Release Write Enable (Output Events) | Default (6) z]
-9 LCK_cycle: | Wait for DLL Lock (Cutput Events) [Default (MoWait) -]
-g Match_cycle: Wait for DCI Match (Output Events) | Auto s
-g DriveDone: | Drive Done Pin High
Property display level: | Advanced $ | | Display switch names Default
OK |k Cancel || Apply Help
Process Properties - Readback Options
Switch Name Property Name Value

-g Security: Security | Enable Readback and Reconfiguration |

-g ReadBack Create ReadBack Data Files

-g Persist: Allow SelectMAP Pins to Persisr.

-l Create Logic Allocation File

-m Create Mask File

-g EssentialBits:

DC1 Update Mode

Fallback Reconfiguration
Watchdog Timer Mode
TIMER_USR: Watchdog Timer Value
SelectMAP Abort Sequence
BP1 Reads Per Page

cycle Cycles for First BRI Page Read

User Access Register Value

- Configuration Options

Power Down Device if Over Safe Temperature

Pull Up
Pull Up
Pull Up
Pull Up
Pull Up
Pull Up
Pull Up
Pull Up
Pull Up
Pull Up
Pull Up
Pull Up
Pull Down
OuFFFFFFFF
As Required
Enable

off

T R N T T T

CCRETET

lDlsabJe I
1

EERETNETS

None

: Advarced $ + Display gwitch names Default

Apply Help

Essential Bits

. Process Properties - Encryption Options

Category Switch Name Property Name Value
ge";'_‘" o‘_’“":‘; i -g Encrypt: Encrypt Bitstream
onfiguration Options i i
Startup Options -g Key0: AES Key (Hex String)
Readback Options -g KeyFile: Input Encryption Key File

-gStatCBC: AES Initial Vector

-g JTAG_SysMon: |TAG to System Monitor Connection | Enable

Finally, run “Generate Programming File” to get the bitstream:

File Edit View Project Source Process Tools Window Layout Help
D23 Hd sDDx v iprppr@B@llaaoxiseir 9
Design BO&D

countersbit.uct counter8bit.vhd [=lim)x]

[i View: @ # Implementation Simulation =
Wi library |
5] | Hierarchy use IEEE.STD._LOGI
[j‘ '?ﬂ countarBbit use IEEE.NUMERIC_S
| = xeSvix70t-1/1136
%', counter8bit - counter [counterBhit.vhd) —I];(I)I‘_;' 10;32::;1?2;: .
T "y counter@bit.ucf clk : in
enable :
2 data_out I (7 downto
&
Al end counterBbit;
architecture counter of counterBbit is
Rerun All
¥ o signal reg, p_reg: =td_l =ctor (7 downto 0);
¥) No Processes Running begin L
3: Processes: counterBbit - counter Force Process Up-to-Date 1:;omk\: process (reg, rst_high, enable)
L Design Summary/Reports | eqin . I .

™| w ¥ Design Utilities ¥ Implement Top Module L%p_tithf_ﬂiq]:m I:-—} :ii 'E‘h; IL':')

+ ’ User Constraints Design Goals & Strategies eleif (enable = '1') then
2 fo = p_req <= reg + 1;

@ Synthesize - X5T elee

% £ _Implement Design B Process Properties... p_reg <= reg; o
m Generate Programming File] T end if: i

= @ Configure Target Device K O I ojE: D]
Start |®2 Design | .| Fles | I} Librades | L Design Summary (out of date] ¥ |5 countergbit.vhd X2 counterBbit.uct x

Check that the process finish without errors:

L Fle Edit View Project Source Process Tools Window Layout Help EIEE

D2EI SIxDDOX v =280, S mailir !V
Desi 7 F
son R counterBbit Project Status (08/10/2016 - 13:20:04)
| View: @ $} Implementation . [l Simulation
N Project File: counterBhit.xise Parser Errors: Mo Errors
d=| | Hierarchy - -
1 countergbit Module Name: countergbit Implementation State: Programming File Generated
H"’l = [xcSvfxTOL-1/f1136 Target Device: xeSvix70t-1/1136 = Errors: MNo Errors
= .. counterBbit - counter {counter8bit.vhd) Product Version: ISE 14.7 + Warnings: Mo Wamings
o [counter8bit.ucf —
% Design Goal: Balanced * Routing Results: A1l Signal mpletel
B £ Mo Processes Running Design Strategy: Kilinx Default (unlocked) + Timing Constraints: |4l Constraints Met
: - » " .
e Processes: counterabit - counter System Settings = Final Timing Score 0 {Timing Report;
. T Design Summary/Reparts
| =% Design Utilities
il Device Utilization Summary | 1
e Slice Logic Utilization Used ilabl (s)
=|P2.1, Implement Design
m & ta@ Translate Number of Slice Registers B 44,800 1%
- E3L Map Number used as Flip Flops 8
- P Place & Route
@ Generate Programming File Number of Slice LUTs B 44,800 1%
% Configure Target Device Number used as logic 7 44,800 1%
) B '
= Amalyze Deslgn Uiseg ChipScps Number using 05 outout only [}
| Stat =% Design |) Fles [Libraries | i Design Summary (Programming File Generated) 3 | (] counterBbitwhd i< |] counterBbitucf 3
Console [eis el

rocess "Generate Programming File" complebed successTully
= i ountersbit_vhdl.pri is missing.

WARNING: ProjectMgmt - File /home/Jbr/projects/counter8bits/counterébit_vhdl.pri 1s missing.

o

I I
2] Console @ Erors | fi Wamings | i Find in Files Results |

Now there are in the user’s project folder two of the target files: “counter8bit.bit” and
“counter8bit.1l”.

VCD and Dat Files

The last target file that is missing is the DAT file but before to get it is necessary to generate the VCD

file using the ISim tool. So add the test bench into the project and run the simulator:

L File Edit View Project Source Process Tools Window Layout Help ==E)
02 - i A A RE DN 7
Design = = X = E
counterBbit Project Status (08/10/2016 - 13:20:04)
View: ' #} Implementation f
Project File: counterBbit.xise Parser Errors: Mo Errors
- | Behavioral s t t 1
@ Module Name: counterBbit Implementation State: Programming File Generated
Hierarch I T T T
| {1 coyntp r8b Target Device: xcSvfx70t-1fF1136 » Errors: No Errors
°| counterBbit | 1 1
= £ xcSwuixTO0E-1ff1136 a Product Version: ISE 14.7 = Warnings: Ne Wamings
| th_counterBb wnter (th_countes [trorl | |Design Goal: Balanced « Routing Results: All Signals Completely Routed
" f] uut - counterBbit - counter (counterBbit.vh 121 | I I
L = | |Design Strategy: Xilinx Default (unlocked) * Timing Constraints: All Constraints Met
¢ @ I] ;‘. Environment: System Settings = Final Timing Score: 0 (Timing Report)
¥ [No Processes Running] ;-
g Processes: th counter8bit - th counter -': Device Utilization Summary [=1
- ‘;1 1Sim Simulator Slice Logic Utilization Used |Available Utilization Note(s)
(o 2 Behavioral C m — 1 — | -
umber of Slice Registers B 44,800 1%
- Simulate Behavioral Model d |
% mber used as Flip Flops 8
- Rerun All ber of Slice LUTs 8 44,800 1%
| imber used as logic 7 44,800 1%
Number using 05 output only 6 L

& Start | @3 Design |] Files | Libraries \Programming File Generated)] counterBbitvhd 3 [&] counterBbit.ucf
—_— %% Process Properties...

Console
1 WARNING:ProjectHgmt File shome/sjbr/projects/countergbit/counter8bit_vhdl.prj is missing.

Process “Behavioral Check Syntax" completed successfully
rWARNING:ProjectHgmt - File shome/jbr/projects/countergbit/counter8bit_vhdl.prj 1s missing.

‘
[Z] Console @) Emors | I Wamings | @4 Find in Files Results

Run highlighted process

The VCD file is obtained by some commands running on the console of the ISim tool:

restart
ved dumpfile <design>.ved
ved dumpvars -m <inst> -1 2

Note: <inst> is the name of the instance given for the highest level module. Normally is in the
design call in the simulation framework.

[Ale Edit View Simulation Window Layout Help =] (=1
]2 Y ooy B IEBEA DD N Bl I v @ k% 100us |v| G |l (3 Re-launch
Instances and Processes =0 F 3 Objects 0 2 X
L}” _J' 1A=] 2] Simulation Objects...
x|
; LB % -
Instance and Process Name Design L
th ¢ 8hit Jth_counte | Object Name y
o stdl_logic_1164 st_logic T fucycle c.. 13
W rumeric_std FUPErE S £ rst_high =
ly enable 1
b cik L]
5 data_out{7:0) o
ok period 1€
1B e 1€
15 num_vectors 1€
4 »
£ Instance...| f&n Memory | [Source..] -, o | = Default.wefg*
Console

This is a Full version of I1Sim
Time resolution is 1 ps
Simulator is doing circuit initialization process.
Finished circuit initialization process.
I1Sim=> restart
@ Console CompilationLog @ Breakpoints | gs Find in Files Results | | Search Results
T

10

7 File Edit View Simulation Window Layout Help

02 d Y ® o o M

Instances and Processes 5 0@ X Objects mODE®E & _-
{ " Simulation Objects...

([|| (|||) A || 2D || z
1 (il 1 1 .
r | e) e ¥
Instance and Process Name Design L = b
th_counte Object Name \| & clk period
i 1 ~ - I
std_lnq_uc_lléét std_lnqlt_ § ftu_cycle_c... @ ¢ 1k rst_high
C = 1 i ; -
numeric_std numeric_ I rst_high 1 1k enable
@ enable] |_) 1]
LI‘ clk 1 Iy ftu

B data_out(7:0] Ul)
& clk_period 1c
-é num_vectors 1€ =

=r

'

]

I

[

1 4 ¥
Instance... E Memory zSource,.. 1 ¥] Default.wcfg* 4

Console
LIS 1S d FUll VEISION O 130T,

Time resolution is 1 ps

Simulator is doing circuit initialization process.
Finished circuit initialization process.

ISim> restart

1Sim> wvcd dumpfile counter8bit.ved

@ Console ||| Compilation Log | @ Breakpoints | ia4 Find in Files Results | g Search Results
T

7T File Edit View Simulation Window Layout Help

12 H 3 ® o o MK TR TS A A AR R @ e b B Op T 100 v b ||| GRelaunch
Instances and Processes =[O E X Objects — 2 (%
I [@ 1l Simulation Object:
; I
Instance and Process Name Design L — =
th_counte Object Name N
strl_logic_1164 std_logic) Mu_cyclec... ©
d numeric_std numeric_s ! 1
- € i
n @
1 "
1 W
2r
I
1 C
£ Instance Memeory] Seurce... 4 | Default.wclg®
Console X
TITHE TESUTULUIT TS L s r

Simulator is doing circuit initialization process
Finished circuit initialization process.

1Sim> restart

15im> wvcd dumpfile counterBbit.ved

> wed dumpvars -m uut -l 2

M Console Compilation Log | @ Breakpoints | (a8 FAndin Fles Results gy Search Results
T

Run the simulation up to the desired time; once it has finished type:

ved dumpflush
quit

11

T Fle Edit View Simulation Window Layout Help

1 2 H - ® @ o= M a o IIl)X [1.00us |~ | Gz || | CIRe-launch
Instances Pi 5 +) [0 (& = (& ¥
stances and Processe: X E;DJ(‘C:St oo %)
g zlallea & imulation Objects ;
N T =
Instance and Process Name Design L Il - B
th_counte Object Name N

stl_logic_1164 std_logic

J num

_std numeric_s

o
3
[
|
] v 3
2 Instance... B Memory | Source... 4 il Default.wcfg®
Console
SUNLIELUE 15 UG LHLWIL U 2Ll PIULess.,
Finished circuit initialization process.
1Sim> restart
1Sim=> wved dumpfile counterBbit.ved
1Sim> wed dumpwvars -m wut -1 2
15im> -
B Console || | Compilation Log | @ Breakpoints | \aq Fnd in Files Results | gy Search Results

[file Edit View Simulation Window Layout Help = =
12 H 3 ® w o M)i B O = i,N ¢ AR P, B &2 t 7 @ b E [L00us | K JRe-launch
Instances and Processes woEE Objetts moOEE s _-
¥ [e i Simulation Objects..
d ||| <G e 2
)) % -
Instance and Process Name Design L | || " B
W tb_counterdbit th counte| Object Name '
i uut counterBt B T <
“ th_counte § rst_high . 8
clie_process th_counte [y enable 1| @
im_pr th_counte cik 1
std_logic_1164 std_logic_ B data_outj7:0]]
numeric_std numeric_: B ci_period =
& num_vectors 2 2
=
+
L]
I
1
1 » ¥
Instance... Lgh Memory | [=]Source..] = | [l Default.wefg®
Console 0 B
** Failure:Simulation ended succesfully
User(VHDL) Code Called Simulation Stop
In process th_counter8bit.vhd:ftu_endsim
INFO: Simulator is stopped.
1Sim> ved dumpflush =

B Console | CompilationLog @ Breakpoints a6 Find in Files Results | |y Search Results

12

= Fle Edit View Simulation Window Layout Help IS (=)

Y E L b . ® v o= MM B » oI |1.00us|~ b= i 3 Re-launch
Instances and Processes = DEE Objects = (T () (3 F: 2.8
2 " " Simulation Objects...
@)@ 2] @)e) .
wlelimiml -
Instance and Process Name Design L _Wlﬁ El) 3
G tb_counterBhit th_counte | Object Name h!
O vt counterdt fp Mu_cycle c.. 20 F
th_counte 'Y m',_.,-g,, . 8
(f elk_process th_counte 1 enabie 1| @
L :stim_proc th_counte ik 1
@ std_logic_1164 std_logic_ 2 deta_outi7:0] o @
@ numeric_sid numeric_s

1§ cik_periad STl
B num_vectors 1 &

] | b ¥ (4 [T b A
£ instance...| [gn Memory | = Source..| = Default.wcfg*

Console e

** Failure:Simulation ended succesfully
User[VHDL) Code Called Simulation Stop
In process th_counter8bit.vhd:flu_endsim

INFO: Simulator is stopped.
1Sim= wcd dumpflush
ISim> quit C

B Console || Compilation Log =@ Breakpoints 4 Find in Fles Results | ' Search Results

Now the workload file is in the user’s project folder called “counter8bit.vcd”, containing the set of
stimuli. Using this file in conjunction with the previously created PIN file it is the way to generate
the DAT file with a tool from the UFF web server. Firstly, it is necessary to upload the VCD file to
UFF as did it previously with the UCF file:

= count Upload file to server

v ol
= TN
counter8bit.pin

&4 counter8bit.ucf

Then click over “Create new file” tab and select the “FPGA Vector File (.dat) from VCD dump (.vcd)”
option:

Plain text file

Directory
User Constraint File {.ucf)

| FPGA vector File (.dat) from VCD dump (.vcd) |
Logic Location File (.Il) for configuration bits

Analysis of campaign results

13

Verify that the options are correct and generate the DAT file:

Generate FPGA vector file

@ Model of the target FPGA:

xcSvfx70t

Value Change dump (.vcd) file: Jcounter8bit.vcd

User provided pin (.pin) file: counter8bit.pin

Name of the Unit Under Test: uut
Handle "x" values: Exit with error
Handle "z* values: Exit with error

4 Output file name (optional):

So now the last file called “counter8bit.dat” is in the user’s project folder. Finally, add the BIT and
LL files to the UFF web server. At this point, the user has a complete set of files to emulate the
Design Under Test. It is time to set up an FT-UNSHADES design.

[_ L1 L1 H ‘In_.
LI
|] counter8bit.bit 3.2MB
[J # counter8bit.dat 265 bytes
.| counter8bit.ll 2.7KB
[0 # counter8bit.pin 68 bytes
[] @ counter8bit.ucf 325 bytes

12.4 KB

| counter8bit.vcd

Appendix A

Design Source Code:

14

counter8bit.vhd
library IEEE;
use IEEE.STD LOGIC 1164.all;
use IEEE.NUMERIC STD.all;

entity counter8bit is

port (
rst_high: in std_logic;
clk: in std_logic;

enable: in std_logic;
data_out: out std_logic_vector (7 downto 0)
Ik

end counter8bit;

architecture counter of counter8bit is
signal reg, p_reg: unsigned (7 downto 0);
begin

comb: process (reg, rst_high, enable)
begin
if (rst_high = '"1") then
p_reg <= (others => '0");
elsif (enable = '1') then
p_reg <= reg + 1;
else
p_reg <= reg;
end if;
end process;

data_out <= std_logic_vector(reg);

sinc: process (clk)
begin
if (clk = '"1" and clk'event) then
reg <= p_reg;
end if;
end process;

end counter;

Test Bench:

tb_counter8bit.vhd

library IEEE;
use IEEE.STD _LOGIC_1164.all;
use IEEE.NUMERIC_STD.all;

15

16

entity tb_counter8bit is
end tb_counter8bit;

architecture tb_counter of tb_counter8bit is

component counter8bit
port(
rst_high: in std_logic;
enable: in std_logic;
clk: in std_logic;
data_out: out std_logic_vector (7 downto 0)
)i

end component;

-- Simulation will stop at time = clk_period * num_vectors

constant clk_period: time := 10 ns;
constant num_vectors: integer := 285;
signal ftu_cycle_count: integer := 0;

-- Inputs

signal rst_high: std_logic := '1';

signal enable: std_logic := '0';

signal clk: std_logic := '"1';

-- Qutputs

signal data_out: std_logic_vector (7 downto 0);
begin

-- Stops simulation at desired time.
-- Compatible with FTU2 and FTU1.
ftu_endsim: process(clk)
begin
if (rising_edge(clk))then
ftu_cycle_count <= ftu_cycle_count + 1;
if(ftu_cycle_count = num_vectors)then
report "Simulation ended succesfully"
severity failure;
end if;
end if;
end process;

-- Instantiate the Unit Under Test (UUT)
uut: counter8bit port map (

rst_high => rst_high,

enable => enable,

clk => clk,
data_out => data_out
)i

-- Clock process definitions
clk_process: process

begin
clk <= '0";
wait for clk_period/2;
clk <= '"1";

wait for clk_period/2;
end process;

-- Stimulus process
stim_proc: process
begin
-- 4 cycle rst:
rst_high <= '1';
wait for clk_period * 4;
-- 20 cycles of not reset
rst_high <= '0';
enable <= '1';
wait for clk_period * 20;
-- 5 cycles of not enable
enable <= '0';
wait for clk_period * 5;
-- 256 cycles of enable
enable <= '1';
wait for clk_period * 256;
wait;
end process;

-- Enable count only one each 4 clock cycles

-- enable <= '1' when ftu_cycle_count mod 4 = 0 else

end;

17

First Steps on UFF

This chapter describes in the simplest way possible the most common tasks you’ll perform when
using UFF:

* Preparation of the system for emulation of a project,
* Automatic execution of campaigns,

* Basic usage of the debugger.

UFF Workspace

The UFF workspace is divided as follows:

Logged as nadie ;--'E".\"'“_". esa u-?{ @
o 0 o4

[#& countersbit

No TNT session

No project is open

Top Bar (top side)

Contains widgets to manage the session, including the logout button and controls to change the
distribution of the rest of the panels.

UFF Panel (left side)

Graphical interface for the current task; during most of this document we’ll deal exclusively
with its contents, and most screenshots from here onwards will include only it.

TNT Panel (right side)

Text interface for the current task; most actions we perform will automatically execute
commands that will be visible here. You will never have to write text here, but it allows a much
greater degree of power and flexibility than using the graphical interface.

Status Bar (bottom side)

Status of background tasks. Not relevant unless you’re running a campaign.

18

Setting Up The Design
To do so, login into the UFF website at http://ftu.us.es/uff/login/

Once you log in, the list of available projects appears in the UFF Panel. You can create, delete, or
open existing ones; in this example, we’ll open a simple 8 bit counter called “counter_example”.

o 0O 4
[] # countersbit

When you open a project, youw’ll get a message saying "No TNT session"; this means there’s no tntsh
process associated with your user. If you had been working with another project and not closed it
properly, you’d get a "You’re currently working in project Foo" message instead.

&| counterghit

Mo TNT session

Also, a new tab will be added to the UFF panel: labelled "files", it will contain a list of all files in the
current project.

19

http://ftu.us.es/uff/login/

o O & =] o4
@ [—
[% counterbit 3.2 MB 01/10/15
[[counterdat 3. 6KB 01/10/15
[0 [counterll 2.7 KB 01/10/15
[# counter.pin 68 bytes 01/10/15
[|« countertcl 300 bytes 01/10/15 |
[0 7 dumpl 3.2 MB Jul's
0 |] dumpz 3.2 MB Jul's
[|] dump3 3.2 MB uls
[|] dump4 3.2 MB uls
1 | dumps 3.2 MB Juls x|

Back to the "counter8bit" tab, press the big, red button that says "Run this one" to proceed; you’ll be
given an additional tab ("Hierarchy") and prompted to select a device on which to emulate the

project.

ﬂ counterghit

M s ftuz_xcSvix70tff1136

" . Hierarchy

AICIA - Univ. Sevilla yes

If the device is available, it will be opened by the current tnt session, and you’ll be allowed to
configure it for emulation.

Configure the Hardware

To prepare the physical device for emulation, we must configure it so the target FPGA is configured
to behave as the desire circuit, and there is a set of values that can be used to feed its inputs. This is
done by loading objects to the motherboard from the main tab:

20

&| counterghit " . Hierarchy

inputfcounter_8bit.bit

0|5

inputfcounter_8bit.dat

There are no objects loaded.
Drag some here from the left.

Objects are loaded by dragging them from left (unloaded) to right (loaded) side:

#5 countersbit " % Hierarchy i Debug

inputfcounter_Bbit.bit

|

input/counter_8bit.dat

All your files are currently loaded.
Drag them from the right to unload them.

Configure the Software

Once the physical device is configured, we prepare the software side to interface with it. The server
requires a map of the locations of the target FPGA that we want to analyze, that can be loaded from
the Hierarchy tab.

Create new bits [Files “I: Hierarchy i Debug

O O xR ® 4

Load registers from .1l file
Load pins from .pin file

No bits found.
Use the toolbar to create some.

21

Select "load registers from .1l file" and you’ll be provided with a list of options.

Load bits from logic location file (.11)

Logic location file: input/counter_gbit.ll

- Mount point {optional):

Cancel Load registers

Press "Load registers" and the registers will be added to the bit tree; you’ll be able to navigate it as if
it was a file list.

o O~ = ® 14
O | regl

0= o
1

O00Oo0ooao
g |68 | 6l | &l |6t | 6l | 68

Finally, you must create watches on some registers: having a watch on a register or group of
registers means that the system will keep track of their values as emulation advances. You’ll be able
to request the log of all recorded values at any time as long as the watch exists.

22

W count Watch selected bits “I5 Hierarchy

o 0O &) ® %4
reqg/ @

L0

oloooooloaolf
ool el el el
Ly

Campaign Runner

Now inside the “Run” tab, the user could change the different parameters [1: For more information
refer to the tnt scripting guide.] that are displayed for getting a custom campaign. In this guide the
campaign uses the default values.

B Files " @ Hierarchy ¥ Run
% target FPGA configuration: inputfcounter_shit.bit
[b target FPGA vectors: input/counter_ghit.dat
_ batch size: 100000
. check residual damage: Mo
.~ damage perrun: 1
.~ drop on damage: Yes
- show output XOR: No
- unflip after run: No
.~ reconfigure at error: Mo
.~ reconfigure at time: 0
% injector Random -- random cyclefregister combinations

Run Campaign

When all the parameters are ready, click over the “Run Campaign” button and FTU2 will run the
process in the background. In this case a random injector is selected so the user could select some
options for this kind of injections:

23

[coumorotie | Ao iderecy R voes &)

| target FPGA configuration: input/counter 8hit.bit -
9 g p -

@ target FPGA vectors:

Run campaign

. batch size:
- registers: !
< check residual damage: -
" cycles: *
-’ damage per run:
7 runs: 10
. drop on damage: -
- injections per run: 1
. show output XOR:; -
- seed:
f unflip after run: v
. reconfigure at error: Run Random Campaign -
. reconfigure at time: : 0 :
< injector Random -- randorm cyeclefregister combinations -

After click over the “Run Random Campaign” button, a notification message is displayed on the
bottom. When the “Ready” message is shown, it means that the campaign is completed.

Now it is time to analyze the results. To do that click over the “Files” tab where It appears a new
folder called “Results™.

Inside that folder, the results campaigns that the user performs are saved. Each campaign saves the
results in a folder that is called with the following format: YY-MM-DD-hh-mm-ss

Inside this folder there are several files, [1: For more information refer to the tnt scripting guide.] as
follows:

damages.csv

The results of the full campaign. The contents of this file depend on what information the
FTUNSHADES device was configured to collect.

injections.csv

A description of all runs that were executed during the campaign.

reg names.txt

A list of all registers where faults were injected during the campaign. The purpose of this file is
to assign a numeric index to each one of the registers, that is used in the injections.csv file: the
first path corresponds to a 0 in, the second to a 1, etc.

run.tcl

A Tcl script that replicates the campaign if executed. It doubles as a log file for what the
campaign actually did.

stats.txt

Some statistics taken while running the actual campaign.

Hardware Debugger

This tool allows to debug the behaviour of the design. So the user could debug the hardware
without implementing it first. As in campaign mode, some preliminary steps are required to use

24

this tool.

4 Debug

Reconfigure target
Fi with one of
the bitstreams on

board B Fies
I e = &
input/counter_8bit, bit

T ey

° ¢ Hierarchy

4 Debug

O it (L] = =

4 Debug

25

O & ([= & P =l
0

| 1cycle _
O | Jreg 5 cycles b8
10 cycles I
| other.. _[’6
until next event
K1 ¥

I I+ = & o bl

1 cycle 5456 7 8 910
O [y reg 5 cycles | 01/02/03/04'05/06
10 cycles I

other | /0102030405086

until next event

O & le= = =3 £ =l
012345678 91011121314151617181920

[|y Jreg 0B 00 010203040506 10
08 00 0102030405086 10
« ¥

Starting from the beginning, the user has to open the project, select a FPGA and load the bitstream
and the vectors files. Also it is necessary to load the registers but in this case the user can create
some watches [2: Watches are a way of keeping track of the values of bits as emulation advances.]
to see them in the debug process. In this case, select the “reg” bus and click over the “Watch selected
bits” option. Then click over the “reg” bus and select the bit “0” or LSB (Less Significant Bit) from
the list and click over the “Watch selected bits” option again. The eye symbols mean that watches
are created correctly.

26

Once the watches are established, click over the “Debug” tab. The first step is to reconfigure the
bitstream.

The next step is to reload a vector set to feed the target FPGA.

This example needs five clock cycles to start (four cycles for the reset and one more to initialize the
count).

Then click over the "Step cycles" option by five cycles again to see the correct behaviour of the
counter. For each watch there are two waveforms, the upper waveform is the GOLD reference, this
waveform is not affected for the injections. The bottom waveform is the SEU reference, this
waveform is affected for the injections. If the waveforms are green it means that both outputs are
the same but if the colour is red it means that the outputs have discrepancies.

To generate a manual injection, click over the LSB watch and then change the value to “1”. This
action is like to introduce a bitflip into the design.

Now it is possible to see the discrepancies between the GOLD and the SEU outputs.

Closing The Tool

To exit correctly, click over the button displayed in the following picture and select the three
options in order. Firstly “Release FTUNSHADES device”, secondly “Close TNT session” and thirdly
“Close project”. Finally logout the session.

27

Working with partial bitstreams

This chapter describes how to work with partial reconfiguration bitstreams, keeping user Flip-flop
contents intact. This can be used to work with designs that use partial reconfiguration, either to
optimize FPGA resource utilization, to measure effectivenes of adaptative reconfiguration
strategies, or to test scrubbing schemas.

This chapter describes the processes needed to work with multiple partial bitstreams in FT-
Unshades2:

* Design preparation for partial reconfiguration.

* Adding multiple bitstreams to a user project.

* Working with multiple bitstreams in the debugger.

Design preparation for partial reconfiguration

The user must prepare his/her design for partial reconfiguration. A good document that explains
the creation of partial bitstreams is Xilinx’s XAPP290

Since the partial reconfiguration is done keeping the internal state of the flip-flops, the user must
take care that the flip-flop locations are not changed during the reconfiguration. This can be
manually checked by comparing the flip-flop locations in the initial .11 with their locations in the
.11 of the modified design.

Also, constraints may be added to flip-flop and other element locations, see Xilinx Constraints Guide
for details.

As a result of the design preparation process, the user should have at least one full bitstream for the
initial FPGA configuration and a number of partial bitstreams that can be applied to the full
bitstream to change some of its features.

Example design

An example design for the Virtex-5 FX70T FPGA is provided here. This design contains three .bit
files:

* counter8bit.bit: Full bitstream of an 8-bit counter that counts up

* up2down.bit: Partial bitstream to change counter direction from up to down

» down2up.bit: Partial bitstream to change counter direction from down to up
The design has been created following these steps:

1. Create an 8-bit counter design and perform its FPGA implementation for FT-Unshades2.
2. Modify the 8-bit counter sources so the count is decrementing instead of incrementing.

3. Perform an implementation of the modified design, without overwriting the implementation
files for the first design.

28

https://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/cgd.pdf
http://woden.us.es/docs/ftu2/examples/partialbits/counter/

4. Manually check, in the generated .11 files for both designs, that the flip-flop locations have not
been changed by the implementation processes. In case flip-flop locations have changed,
constraints should be added to the design to assure fixed placement of the locations whose
value must persist between configurations. See Xilinx Constraints Guide for details.

5. Use bhitgen to create a partial bitstream to convert the first design into the second (change
counter direction from up to down). See Xilinx’s XAPP290 for details on how to perform these
operations.

6. Optionally, use bitgen to create a partial bitstream to convert the second design into the first
(change counter direction from down to up).

Adding multiple bitstreams to a user project

Adding multiple bistreams to a user project is easy using UFF. The user must just upload all the .bit
files relevant to his/her design. Please note that the two partial bitstreams are smaller in size
compared to the full bitstream:

O

-esa g G

* 1 Hierarchy

L
] |3 counter_8hit bit 3.2 MB
(] [counter 8bit.dat 36 KB
] =] counter_8hitll 2.7 KB
[] |# counter 8hit.pin 68 bytes
[] & counter_shit.ucf 331 bytes
[|3 down2up.bit 16 KB
] [} results 4.0 KB
1 |4 up2downhbit 1.6 KB

When opening a device, the user will see all objects that can be loaded into the FT-Unshades2
hardware. In this case, three bitstreams and one vector file:

29

https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/cgd.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp290.pdf

* 2 Hierarchy

downZup.bit

L.

counter_8hit bit

[

up2down.bit

L.

counter_8hit.dat

[

There are no objects loaded.
Drag some here from the left.

The user may load the objects into the hardware, so they are available to be used later. The shell tab
shows the TNT commands generated by the UFF so the user can generate his/her own scripts to
automate this process if needed:

. @ 254 u"&r‘ @ Logged as hipolito

dev_open 1
dev_panic

#u counter_partialreconf

counter_Bhit.bit

i

load_config
counter 8bit.bit
up2down.bit 1

counter Bbit.dat

E ¥

E ¥

down2up.bit load vectors
counter_8bit.dat

E F

All your files are currently loaded.
Drag them from the right to unload
them. 2

load_config up2down.bit
3
load config down2up.bit
4

Working with multiple bitstreams in the debugger

The user can load different bitstreams interactively using the hardware debugger, and check the
effects of the reconfiguration in the design behavior by observing the waveforms. If batch
processing is needed, a script can be made using TCL.

The user can define watches to observe the internal state of the design in the hardware debugger:

30

desa i @
s counter partialreconf [Files * 1 Hierarchy 4§ Debug E

O ¥ e = & + =l

[1 s /enable

1 [} rreg

] & frst_high

When configuring the FPGA with a bitstream, a drop-down menu lets the user choose which one to
use:

Reconfigure target
FPGAs with one o

the bitstreams on
board .conf [} Files * ! Hierarchy

0 E{*&r = -I' 2 4 &~ (Y

. counter_8bit bit
[] | up2down.bit
down2up.bit

1 |) rreg

[] & /rst_high

If we configure the FPGA with the full bitstream counter_8bit.bit, we can step some clock cycles
and watch the counter increase:

s counter_partialreconf [} Files * . Hierarchy 4 Debug E

I I = = 2 > =l

01 2 3 4567 8 810 -
[& jenable
O [jreg 0o 01/02/0304/0506
00 010203040506
] & /rst_high

31

We can then reconfigure the design with the up2down.bit bitstream:

* % Hierarchy 4 Debug E

O i e = & > &l

| counter_8bit bit [0123456788510 b
[] | up2downbit
down2up bit
O [jreg 00 01/02/03/04/05:06
oo 01:02:03/04:05/06
] & /rst_high

If we advance some clock cycles we can see the count going down, from cycle 11 to 15. The state of
the user flip-flops is not lost when performing the partial reconfiguration:

" counter_partialreconf [l Files * 1 Hierarchy 4 Debug E

O i e = s 2 + &l

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 L=
[1 s Jenable
[[Jreg 00 01/02/03/04/0506/0504 0302 01
oo 01:02:0304:05 060504030201
] & /rst_high

Finally, we can reconfigure with the down2up.bit bitstream, which will make the counter count
upwards again:

32

Reconfigure target
FPGAs with one of

the bitstreams on

Board : * : Hierarchy 4 Debug l
IR 3 le= =5 & £ =]

counter Bhit bit o1 2 3 4 5 6 7 8 9 101112131415

|:|: up2down.bit
downZup.bit k

1]

[B freg 0o 01+02-03/04:05:06-0504-03°02:01

oo 01:02:03°04:0506:0504:03°02:01
] & frst_high

If we step the design again, we will see the counter counting up again, from cycle 16 onwards. Note
that the flip-flop contents have been maintained between reconfigurations:

"s counter_partialreconf [} Files * * Hierarchy 4 Debug E

O i e = & & (5

34 56 7 8 0101112131415 1617 1819 20 21 22—
[s jenable
O B freg 00 A01:02:0304:0506:0504:03:02:01-02:0304-050607:08
00 A01:02:0304:0506:0504:03:02:01-02:0304:0506-07:08
] & /rst_high

33

	UFF
	Table of Contents
	About This Document
	Project Preparation
	Pin File
	Ucf File
	Bit and LL Files
	VCD and Dat Files
	Appendix A

	First Steps on UFF
	UFF Workspace
	Setting Up The Design
	Campaign Runner
	Hardware Debugger
	Closing The Tool

	Working with partial bitstreams
	Design preparation for partial reconfiguration
	Example design
	Adding multiple bitstreams to a user project
	Working with multiple bitstreams in the debugger

