Repaso de VHDL para
sintesis

Hipolito Guzman Miranda
Profesor Titular
Universidad de Sevilla
hguzman@us.es

mailto:hipolito@gie.esi.us.es

Contenido

El VHDL que conocéis

Estructura de un fichero VHDL
Seccion Library

Seccion Entity

Seccion Architecture

o Antes del begin
o Después del begin

Estructura de un fichero VHDL

Secciones de un fichero VHDL

Library
Entity

Architecture

configuration (N0 Sse suele usar)

Seccion Library

Library
Inclusion de librerias y paquetes con:
Tipos de datos, Funciones, Componentes, ...

library IEEE;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

Seccion Library

Ejemplo:

library IEEE;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

Sintaxis:

library lib_name;
use lib name.package name.all;

Seccion Library

Paquetes a utilizar:

ieee.std logic 1164.all;

ieee.numeric _std.all;

Sintaxis:

library lib_name;
use lib name.package name.all;

Entity

Generic (N :
Port (rst
clk
enable
count
)5

end counter;

Seccion Entity

entity counter is
integer := 8);
: in STD LOGIC;
. in STD LOGIC;
. in STD LOGIC;
. out STD LOGIC VECTOR (N-1 downto 9)

Descripcion de ‘caja negra’: entradas, salidas y
parametros (generics)

Seccion Entity

Sintaxis: Direction debe ser in, out o bidir

entity entity name is
Generic (gen_name : data type := default value;
<another generic>;
<last port doesn’t have separating ;>
)5
Port (port_name : direction data type;
<another port>;
<last port doesn’t have separating ;>
)5

end entity name;

Architecture

Seccion Architecture

Dos partes diferenciadas:

e Antes del begin

e Despues del begin

Architecture: antes del begin

Antes del begin

e Definicion de tipos de dato
e Declaracion de senales
e Declaracion de componentes

type t_estado is (parada, lento, medio, rapido);
signal estado, p_estado: t estado;
signal cuenta, p_cuenta: std logic vector(7 downto 0);

type enum_data type is (first, second, third, fourth);
signal signal name: data type;
signal signall, signal2: data type;

10

Architecture: antes del begin

Antes del begin

Declaracion de componentes:

component counter 1is Subseccién
Generic (N : integer := 8; Generic y Port
) son exactamente
M : integer := 10); iguales a las de la
Port (rst : in STD_LOGIC; entidadque
] - estamos
clk . 1n STD_LOGIC; declarando como

enable : in STD LOGIC; Ccomponente

count : out STD LOGIC VECTOR
(N-1 downto 0));

end component; B

Architecture: después del begin

Después del begin

e Sentencias concurrentes
e Process
e Instancias de componentes

12

Architecture: después del begin

Sentencias concurrentes

Sentencias concurrentes:

Asignaciones: b <= a;

Operaciones logicas: ¢ <= a and (not b);
Operaciones aritméticas: ¥ <= d + e;
when ... else

with ... select

13

Architecture: después del begin

Sentencias concurrentes

When... else:

d <= (not a) when e="01" else
b when e="10" else
C;

objl <= exprl when condl else
expr2 when cond2 else
<>
exprN;

“TI13

e No pueden usarse dentro de un process ”

With... select:

with e select [i;;;> <:::>

d <= not a when "01",
b when "10",
c when others;

with objl select
obj2 <= exprl when valuel,
expr2 when value2,

<owdd
expr3 when others;

e No pueden usarse dentro de un process

N

15

Architecture: después del begin

Procesos

Procesos:

Asignaciones: b <= a;

Operaciones logicas: ¢ <= a and (not b);
Operaciones aritméticas: ¥ <= d + e;

if... elsif ... else

case ... when

16

Architecture: después del begin

Procesos

comb: process (cont, enable)
begin
if (enable = '1') then
p _cont <= cont + 1;
else
p _cont <= cont;
end if;
end process;

17

Architecture: después del begin

Procesos

proc_name: process (lista sensibilidad)
begin
<Sentencias>
end process;

18

Architecture: después del begin

Procesos sincronos

sinc: process (rst, clk)
begin
if (rst="1") then
cont <= (others=>'0");
elsif (rising edge(clk)) then
cont <= p_cont;
end if;
end process;

Los procesos sincronos siempre se describen de la

misma manera ‘9

Architecture: después del begin

Procesos

If... elsif... else:

if (rst_sync = '1') then
p_cont <= (others=>'0"');

elsif (enable = '1') then
p_cont <= cont + 1;

else
p _cont <= cont;

end if;

“TI13

e No puede usarse fuera de un process 20

Architecture: después del begin

Procesos

If... elsif... else:

if (condl) then
<sentencias>
elsif (cond2) then
<sentencias>
<... mas elsif ...»>
else
<sentencias>
end if;

“TI13

e No puede usarse fuera de un process

21

Architecture: después del begin

Procesos

Case... when:

<sentencias>
when count =>
<sentencias>
when header =>
<sentencias>
when others =>
<sentencias>
end case;

e No puede usarse fuera de un process

case state 1is <:::>
when idle => <i:;;j
Q00

Muy utilizado

para describir
maquinas de

estados

22

Architecture: después del begin

Procesos

Case... when:

<sentencias>
when value2 =>
<sentencias>
when value3 =>
<sentencias>
when others =>
<sentencias>
end case;

e No puede usarse fuera de un process

case objl is <:::>
when valuel => [i;;;:> <i:;ij
000

Muy utilizado

para describir
maquinas de

estados

23

Architecture: después del begin

Instancias de componentes

cont _inst: counter

generic map (N => 8, M => 10)
port map (
rst _high => sig rst high,
enable => sig enable,
clk => clk,
data_out => sig data out

)5

24

Architecture: después del begin

Instancias de componentes

inst name: component name

generic map (genl => vall, gen2 => val2)
port map (

portl => sig topl,

port2 => sig top2,

port3 => sig top3,

<ovdd
portN => sig topN

)5

Component_port => top_signal_or_port,

25

Ejercicio

Disenemos y simulemos un contador de N
bits (instanciado con N=8)

Entradas:

clk, rst, enable : std logic;
Salidas;

Q : unsigned (N-1 downto 9);

26

