VHDL for synthesis:
review

Hipolito Guzman Miranda
Profesor Titular
Universidad de Sevilla
hguzman@us.es

mailto:hipolito@gie.esi.us.es

Contents

The VHDL you (should)
already know

Structure of a VHDL file
Library section
Entity section

Architecture section
o Before begin
o After begin

Structure of a VHDL file

Sections of a VHDL file

Library
Entity

Architecture

configuration (Not commonly used)

Library section

Library
Inclusion of libraries and packages with:
Data types, functions, components, ...

library IEEE;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

Library section

Example:

library IEEE;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

Syntax:

library lib_name;
use lib name.package name.all;

Library section

Packages to use:

ieee.std logic 1164.all;

ieee.numeric _std.all;

Syntax:

library lib_name;
use lib name.package name.all;

Entity section

Entity
‘Black box’ description: inputs, outputs and
parameters (generics)

entity counter is

Generic (N : integer := 8);
Port (rst : in STD LOGIC;
clk : in STD LOGIC;

enable : in STD LOGIC;
count : out STD LOGIC VECTOR (N-1 downto 9)

);

end counter; 7

Entity section

Direction must be in, out or bidir

entity entity name is
Generic (gen_name : data type := default value;
<another generic>;
<last port doesn’t have separating ;>
)5
Port (port_name : direction data type;
<another port>;
<last port doesn’t have separating ;>
)5

end entity name;

Architecture

Architecture section

Two distinct parts:

e Before begin

e After begin

Architecture: before begin

Before begin

e Data type definitions
e Signal declarations
e Component declarations

type t state is (stop, slow, mid, fast);
signal state, n_state: t_ state;
signal count, n_count: std logic vector(7 downto 90);

type enum_data type is (first, second, third, fourth);
signal signal name: data type;
signal signall, signal2: data type;

10

Architecture: before begin

Before begin

Component declarations:

component count

er 1is

Subsection

Generic (N
M :
Port (rst
clk
enable
count

integer := 8;
integer := 10);
© in STD LOGIC;
in STD LOGIC;
in STD LOGIC;

Generic and Port
are exactly equal
to those of the
entity which we
are declaring as a
component

: out STD LOGIC VECTOR
(N-1 downto 0));

end component;

11

Architecture: after begin

After begin

e Concurrent statements
e Process
e Instances of components

12

Architecture: after begin

Concurrent statements

Concurrent statements:

Assignments: b <= a;

Logic operations: ¢ <= a and (not b);
Arithmetic operations: ¥ <= d + e;
when ... else

with ... select

13

When... else:

d <= (not a) when e="01"
b when e="10"
C;
objl <= exprl when condl
expr2 when cond2
<...>
exprN;

else
else

else
else

e Cannot be used inside a process

14

Architecture: after begin

Concurrent statements
With... select:

with e select <:::>
d <= not a when "01", [:;;;> <::;iﬂ
b when "10", YZZ;7 oo
c when others;

with objl select
obj2 <= exprl when valuel,
expr2 when value2,

<owdd
expr3 when others;

e Cannot be used inside a process 15

Architecture: after begin

Process

Process:

Assignments: b <= a;

Logic operations: ¢ <= a and (not b);
Arithmetic operations: ¥ <= d + e;

if... elsif ... else

case ... when

16

Architecture: after begin

Process

comb: process (cont, enable)
begin
if (enable = '1') then
n_cont <= cont + 1;
else
n_cont <= cont;
end if;
end process;

17

Architecture: after begin

Processs

proc_name: process (sensitivity list)
begin
<Statements>
end process;

18

Architecture: after begin

Synchronous process

sync: process (rst, clk)
begin
if (rst="1") then
cont <= (others=>'0");
elsif (rising edge(clk)) then
cont <= n_cont;
end if;
end process;

Synchronous processes are always described in the

same way "

Architecture: after begin

Process

If... elsif... else:

if (rst_sync = '1') then
n_cont <= (others=>'0");

elsif (enable = '1') then
n_cont <= cont + 1;

else
n_cont <= cont;

end if;

“TI13

e Cannot be used outside of a process 20

Architecture: after begin

Process

If... elsif... else:

if (condl) then
<statements>
elsif (cond2) then
<statements>
<... more elsif ...>
else
<statements>
end if;

“TI13

e Cannot be used outside of a process 21

Architecture: after begin

Process

Case... when:

case state is <:::>

when idle => [i;;;j> <i:;;j
<statements> 000

when count =>

<statements>

when header =>

<statements>

when others =>

<statements>

end case;

Widely used to
describe state
machines

e Cannot be used outside of a process 22

Architecture: after begin

Process

Case... when:

case objl is <:::>
when valuel => [i;;;j> <i:;;j
000

<statements>
when value2 =>
<statements>
when value3 =>
<statements>
when others =>
<statements>
end case;

Widely used to
describe state
machines

e Cannot be used outside of a process 23

Architecture: after begin

Instances of components

cont _inst: counter

generic map (N => 8, M => 10)
port map (
rst _high => sig rst high,
enable => sig enable,
clk => clk,
data_out => sig data out

)5

24

Architecture: after begin

Instances of components

inst name: component name

generic map (genl => vall, gen2 => val2)
port map (

portl => sig topl,

port2 => sig top2,

port3 => sig top3,

<ovdd
portN => sig topN

)5

Component_port => top_signal_or_port,

25

Exercise

Let's design and simulate an N-bit counter
(instanced with N=8)

Inputs:

clk, rst, enable : std logic;
Salidas;

Q : unsigned (N-1 downto 9);

26

