
VHDL for synthesis:
review

Hipólito Guzmán Miranda
Profesor Titular

Universidad de Sevilla
hguzman@us.es

1

mailto:hipolito@gie.esi.us.es

The VHDL you (should)
already know

Contents

● Structure of a VHDL file
● Library section
● Entity section
● Architecture section

○ Before begin
○ After begin

2

Sections of a VHDL file

Library

Entity

Architecture

Configuration (not commonly used)

Structure of a VHDL file

3

Library section
Library

Inclusion of libraries and packages with:
Data types, functions, components, …

library IEEE;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Library

4

Library section
Example:

library IEEE;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

Syntax:

library lib_name;

use lib_name.package_name.all;

Library

5

Library section
Packages to use:

ieee.std_logic_1164.all;

ieee.numeric_std.all;

Syntax:

library lib_name;

use lib_name.package_name.all;

Library

6

Entity section
Entity

‘Black box’ description: inputs, outputs and
parameters (generics)

entity counter is

 Generic (N : integer := 8);

 Port (rst : in STD_LOGIC;

 clk : in STD_LOGIC;

 enable : in STD_LOGIC;

 count : out STD_LOGIC_VECTOR (N-1 downto 0)

);

end counter;

Entity

7

Entity section
Syntax:

entity entity_name is

 Generic (gen_name : data_type := default_value;

 <another generic>;

 <last port doesn’t have separating ;>

);

 Port (port_name : direction data_type;

 <another port>;

 <last port doesn’t have separating ;>

);

end entity_name;

Entity

8

Direction must be in, out or bidir

Architecture section
Two distinct parts:

● Before begin

● After begin

Architecture

9

Before begin
● Data type definitions
● Signal declarations
● Component declarations

type t_state is (stop, slow, mid, fast);

signal state, n_state: t_state;

signal count, n_count: std_logic_vector(7 downto 0);

type enum_data_type is (first, second, third, fourth);

signal signal_name: data_type;

signal signal1, signal2: data_type;

Architecture: before begin

10

Before begin
Component declarations:

component counter is

 Generic (N : integer := 8;

 M : integer := 10);

 Port (rst : in STD_LOGIC;

 clk : in STD_LOGIC;

 enable : in STD_LOGIC;

 count : out STD_LOGIC_VECTOR

 (N-1 downto 0));

end component;

Architecture: before begin

11

Subsection
Generic and Port
are exactly equal
to those of the
entity which we
are declaring as a
component

After begin
● Concurrent statements
● Process
● Instances of components

Architecture: after begin

12

Concurrent statements

Concurrent statements:

● Assignments: b <= a;
● Logic operations: c <= a and (not b);
● Arithmetic operations: f <= d + e;
● when … else

● with … select

Architecture: after begin

13

Concurrent statements
When… else:

d <= (not a) when e="01" else

 b when e="10" else

 c;

obj1 <= expr1 when cond1 else

 expr2 when cond2 else

 <…>

 exprN;

● Cannot be used inside a process

Architecture: after begin

14

Concurrent statements
With… select:

with e select

 d <= not a when "01",

 b when "10",

 c when others;

with obj1 select

 obj2 <= expr1 when value1,

 expr2 when value2,

 <...>

 expr3 when others;

● Cannot be used inside a process

Architecture: after begin

15

Process
Process:

● Assignments: b <= a;
● Logic operations: c <= a and (not b);
● Arithmetic operations: f <= d + e;
● if… elsif … else
● case … when

Architecture: after begin

16

Process

comb: process (cont, enable)
 begin
 if (enable = '1') then

 n_cont <= cont + 1;
 else

 n_cont <= cont;
 end if;
 end process;

Architecture: after begin

17

Processs

proc_name: process (sensitivity_list)
 begin
 <Statements>

 end process;

Architecture: after begin

18

Synchronous process
sync: process (rst, clk)
 begin
 if (rst='1') then
 cont <= (others=>'0');
 elsif (rising_edge(clk)) then
 cont <= n_cont;
 end if;
 end process;

Synchronous processes are always described in the
same way

Architecture: after begin

19

Process
If… elsif… else:

if (rst_sync = '1') then

 n_cont <= (others=>'0');

elsif (enable = '1') then

 n_cont <= cont + 1;

else

 n_cont <= cont;

end if;

● Cannot be used outside of a process

Architecture: after begin

20

Process
If… elsif… else:

if (cond1) then

 <statements>

elsif (cond2) then

 <statements>

<... more elsif …>

else

 <statements>

end if;

● Cannot be used outside of a process

Architecture: after begin

21

Process
Case… when:

case state is

 when idle =>

 <statements>

 when count =>

 <statements>

 when header =>

 <statements>

 when others =>

 <statements>

end case;

● Cannot be used outside of a process

Architecture: after begin

22

Widely used to
describe state
machines

Process
Case… when:

case obj1 is

 when value1 =>

 <statements>

 when value2 =>

 <statements>

 when value3 =>

 <statements>

 when others =>

 <statements>

end case;

● Cannot be used outside of a process

Architecture: after begin

23

Widely used to
describe state
machines

Instances of components
cont_inst: counter

generic map (N => 8, M => 10)
port map (
 rst_high => sig_rst_high,
 enable => sig_enable,
 clk => clk,
 data_out => sig_data_out
);

Architecture: after begin

24

Instances of components
inst_name: component_name

generic map (gen1 => val1, gen2 => val2)
port map (
 port1 => sig_top1,
 port2 => sig_top2,
 port3 => sig_top3,

 <...>
 portN => sig_topN
);

Component_port => top_signal_or_port,

Architecture: after begin

25

Exercise

Let’s design and simulate an N-bit counter
(instanced with N=8)

Inputs:
 clk, rst, enable : std_logic;
Salidas;
 Q : unsigned (N-1 downto 0);

26

