

Asignatura Sistemas Digitales Avanzados y Aplicaciones
Máster Universitario en Ingeniería Electrónica, Robótica y Automática

Universidad de Sevilla

Creation of a protocol driver

Practical lesson 1, Advanced Programmable Logic Systems.

Hipólito Guzmán Miranda
Departamento de Ingeniería Electrónica

Universidad de Sevilla
hguzman@us.es

Creation of a protocol driver

The objective of this lesson is to create a VHDL entity, not necessarily synthesizable, to facilitate the
verification of a digital design. This entity receives a 32-bit data word along with a field indicating that
the data is valid.

A VHDL package is provided on the course page that describes a record containing this data.
Remember that, in order to use it, in addition to adding it to the project, you must include it using the
statement use work.protocol_common.all; in the LIBRARY section of the VHDL files that need to
use it. Adding code to the package is permitted if deemed necessary or appropriate.

Driver operation:

The driver must receive as inputs a clock signal, clk, and an input_tran input of the record type
previously mentioned. Its outputs must be the protocol signals: data, ena, startp, and endp. The
entity's ports are described in the following table:

Name Data type Direction Function

input_tran protocol_type in Input transaction

clk std_ulogic in Clock signal, active on rising edge. Changes
in the outputs must be synchronous with this
clock.

data std_ulogic_vector
(width depends on the
student's ID number)

out Output data

ena std_ulogic out Protocol enable signal

startp std_ulogic out Transmission start signal

endp std_ulogic out Transmission end signal

When the valid field of input_tran is ‘1’, the driver must send the data that is currently in the data
field of input_tran, and must send it according to the protocol described in the next section. When a
transaction needs to be sent, the module using the driver will set input_tran.valid to ‘1’ during a
single clock cycle.

Protocol description:

The protocol consists in sending a 32-bit data word, serialized into blocks of 1 to 16 bits, which are
sent sequentially (meaning one block at a time).

mailto:hguzman@us.es

Asignatura Sistemas Digitales Avanzados y Aplicaciones
Máster Universitario en Ingeniería Electrónica, Robótica y Automática

Universidad de Sevilla

When data is to be sent, the ena signal must be activated. Following this, the startp signal must be
enabled for one clock cycle, after which the data must be sent in the correct order through the data
port. When no data is being sent, the data output must be set to high impedance (‘Z’). Finally, the
endp signal must be enabled for one clock cycle and the ena signal must be disabled. Between any of
these steps, there may be wait cycles, as described in the following section.

Personalization with DNI / NIE:

Using the digits of the student’s DNI / NIE:

d7 /
char1

d6

d5

d4

d3

d2

d1

d0

char0

The following protocol parameters will be calculated:

Width of serialized data (width of data blocks):
d0 modulo 5:

●​ 0: 16-bit width
●​ 1: 8-bit width
●​ 2: 4-bit width
●​ 3: 2-bit width
●​ 4: 1-bit width

Order of serialized data:
d1 is:

●​ Even: data blocks are sent starting with the most significant and ending with the least
significant.

●​ Odd: data blocks are sent starting with the least significant and ending with the most
significant.

Polarity of the ena signal:
d2 is:

●​ Even: ena is active low
●​ Odd: ena is active high

Polarities of the startp and endp signals:
d3 is:

●​ Even: active high
●​ Odd: active low

Cycles, after activating ena, that must be waited before activating the startp signal:
d3

Cycles, after activating startp, that must be waited before assigning the value of the
first data block to data:
d4

Duration, in cycles, of each data block:

Asignatura Sistemas Digitales Avanzados y Aplicaciones
Máster Universitario en Ingeniería Electrónica, Robótica y Automática

Universidad de Sevilla

d5 * 10 + d4

If this calculation results in a value of 0, a value of 1 must be used instead. The value in data
must remain constant during this number of cycles.

Cycles, counting from the end of the last cycle of the last data block, that must be
waited before activating the endp signal:
d6

Cycles, after activating the endp signal, that must be waited before disabling ena:
d6 + d5

Minimum cycles, after disabling ena, that must be waited before reactivating ena if a
new transaction is to be sent:
d5 + d4

Realization and evaluation of the practical lesson:

Students must develop a protocol driver adapted to their student's ID number (NIF/NIE/etc). It is
recommended to draw waveform diagrams of the resulting protocol before writing the VHDL code.

For the development of the driver, one option is to use processes without a sensitivity list that use the
wait statement. The wait statement can be used in the following ways:

wait for <time>; -- Waits for the specified time, for example: wait for 10 ns;

wait on <sensitivity list> -- Waits for one of the signals specified in the

sensitivity list to change, for example: wait on enable, disable;

wait until <condition> -- Waits for one of the signals in the condition to change

and for the condition to be met, for example: wait until enable = '1';

wait; -- Without further arguments, this statement waits indefinitely, preventing

the process from terminating.

Enhancements to the basic functionality will be considered when grading, such as:

●​ Reporting when a bus transaction starts and ends using the report statement.
●​ Considering what happens if the driver receives a new transaction while it is busy and

implementing a solution.

A report on the practical exercise must be prepared, describing the work performed and
demonstrating the correct implementation of the protocol driver. The report must include calculations
of the protocol parameters based on the student's ID number and the expected waveform. For this
purpose, https://wavedrom.com/editor.html is a good resource to generate waveform diagrams. The
demonstration of functionality must be based on simulations and screen captures of the resulting
waveforms. In addition to the report, all developed code must be submitted, including testbenches and
the protocol_common package.

https://wavedrom.com/editor.html

	Creation of a protocol driver
	Creation of a protocol driver
	Driver operation:
	Protocol description:
	Personalization with DNI / NIE:
	Realization and evaluation of the practical lesson:

