
Verificación funcional

Hipólito Guzmán Miranda
Departamento de Ingeniería Electrónica

Universidad de Sevilla
hguzman@us.es

Acknowledgement to Ray Salemi
1

mailto:hipolito@gie.esi.us.es

Contexto docente

2

B02: Sistemas Lógicos Programables Avanzados
● Tema 1: Arquitectura FPGAs
● Tema 2: Metodologías de diseño digital avanzado
● Tema 3: VHDL avanzado
● Tema 4: Capacidades de verificación en circuitos

digitales

Conocimientos previos requeridos:
● VHDL básico
● VHDL avanzado

Objetivos de aprendizaje

3

● Conocer las limitaciones de los
testbenches clásicos

● Conocer las métricas de verificación más
comunes, como pueden ser el alcance de
código y el alcance funcional

● Comprender el concepto de modelado a
nivel de transacción

● Adquirir las capacidades conceptuales
para construir paso a paso un testbench
estructurado

Contenido

 Capacidades de Verificación Funcional

4

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Contenido

 Capacidades de Verificación Funcional

5

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

¿Qué es la verificación?

6

Comprobar que la implementación realizada
realmente cumple con las especificaciones

Contenido

 Capacidades de Verificación Funcional

7

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Algunas buenas razones...
● Verification gap
● Salud mental
● Verificación puede ser entre el 50% y el 80% del

tiempo total del desarrollo
● Costes de fabricación de ASIC
● Industrias donde los fallos deben evitarse a toda

costa: espacio, aeronáutica, biomedicina, nuclear
…

● Dificultad de diagnosticar y arreglar fallos sobre el
prototipo FPGA

● Terminar (de verdad) los proyectos a tiempo

¿Por qué verificar?

8

¿Por qué aprender verificación?

Motivación

9

Contenido

 Capacidades de Verificación Funcional

10

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Test ‘tradicional’
Típico testbench:
● Estímulos definidos a mano
● Siempre los mismos estímulos
● Comprobación mirando “a ojo” la forma

de onda

Este enfoque no escala para tests complejos
Ej: 200K estímulos y 1M ciclos de reloj de
formas de onda que comprobar

Test tradicional

11

Test dirigido vs aleatorio
● Los tests pueden ser de dos tipos:

○ Directed
■ Estímulos determinados de antemano
■ (puedo haber pre-calculado la salida

esperada)
○ Random

■ Estímulos generados cada vez que se lanza
la simulación

■ (¿cómo sé si la salida es correcta?)

Test tradicional

12

¿Cuándo parar?

● En ambos casos, ¡es difícil estar seguro
de que lo hemos probado todo!

● ¿Cuándo sé que he acabado de verificar?

Test tradicional

13

Contenido

 Capacidades de Verificación Funcional

14

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Es una técnica automática

● La hace el simulador, compilando los
ejecutables de simulación con ciertas
opciones

● Soportado por ModelSim/Questa, Aldec,
Vivado XSim, GHDL (parcialmente), etc...

Code Coverage

15

Identificar código que
no ha sido probado

● Mnemónico:
“Some Beers For Extra Courage”

● Statement
● Branch
● FSM
● Expression
● Condition

Code Coverage

16

Statement Coverage

● Qué sentencias se han ejecutado y
cuáles no

● Sentencia es cualquier cosa que termine
en punto y coma

● Una sentencia (como mucho) por línea
facilita la labor de cálculo del coverage al
simulador

Code Coverage

17

18

Branch Coverage

● Puede ser que entremos en un if, pero,
¿por cuál if / elsif / else salimos? ¿por
cuál ‘when X =>’ ?

● Evalúa si se han alcanzado las distintas
ramificaciones de nuestro código

Code Coverage

19

Branch Coverage

20

FSM Coverage

● Al verificar máquinas de estado, nos
interesa saber si hemos cubierto:
○ Los estados
○ Las posibles transiciones entre estados

● Para el ‘when others =>’ normalmente
hay que añadir una excepción
○ En la jerga, se llama “code coverage exclusion”

Code Coverage

21

22

Expression Coverage
Cuando asignamos:

salida <= a OR (b AND c);

Queremos asegurarnos de que hemos probado
todos los casos

Code Coverage

23

Si salida = ‘0’...
● ¿Es porque a, b = ‘0’?
● ¿Es porque a, c = ‘0’?

Si salida = ‘1’...
● ¿Es porque a = ‘1’ ?
● ¿Es porque b = ’1’

y c = ‘1’ ?

Condition Coverage
Como Expression Coverage, pero en las
condiciones en lugar de las asignaciones:
if(a='1' OR (b='1' AND c='1')) then

● ¿a = ‘1’?
● ¿b=’1’ y c=’1’?

else

● ¿a = ‘0’ y b = ‘0’?
● ¿a = ‘0’ y c = ‘0’?

Code Coverage

24

FEC : Focused Expression Coverage

Condition Coverage

25

Contenido

 Capacidades de Verificación Funcional

26

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Notifica si una
condición no se cumple

assert condition report string

severity severity_level;

4 niveles de gravedad:
● note
● warning
● error
● failure (stops simulation)

Assertions

27

¿Son sintetizables?

● No son sintetizables, pero tampoco
impiden la síntesis

● El sintetizador en general no mira los
assertions
○ Sólo puede mirar aquellos assertions cuya

condición sea estática (por ejemplo para evitar
síntesis con GENERICS inválidos), y realiza el
chequeo en tiempo de síntesis

● Sólo los tiene en cuenta el simulador

Assertions

28

Tipos de assertions
● Firewall assertions

○ Para asegurar que tus bloques están siendo
usados correctamente

○ Los suele añadir el ingeniero de diseño
● Protocol monitor

○ Para asegurar que diferentes bloques se están
comunicando entre sí correctamente (están
cumpliendo el protocolo)

○ Los suele añadir el ingeniero de verificación
○ Un protocol monitor tiene más que assertions

(Ambos usan la misma sentencia VHDL, assert)

Assertions

29

Ejemplos

● En VHDL:
assert (cont >= 0 and cont <= 7)

report "cont overflow, should

never happen!" severity failure;

También hay assertions en otros lenguajes
como PSL o SystemVerilog

Assertions

30

assert DATA_LENGTH > 0

report "fadapt : DATA_LENGTH must be a positive

non-zero integer"

severity failure;

assert (NOT (ifull = '1' and wr_en='1' and

falling_edge(clk)))

report "fadapt : Trying to write in a full fifo: data

will be lost. Check throughput of blocks"

severity failure;

assert (NOT (empty = '1' and rd_en='1' and

falling_edge(clk)))

report "fadapt : Trying to read from an empty fifo:

invalid data will be processed"

severity failure;
31

Si la condición es
compleja, mejor en un if

● También se puede usar report sin
assert:

if (output /= expected) then
 report (“error in data”)
 severity error;
end if;

Assertions

32

Contenido

 Capacidades de Verificación Funcional

33

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Transaction-Level Modeling (TLM)

Es elevar el nivel de abstracción en
verificación, separando:
● Los datos que se mueven por los

interfaces
de
● El movimiento de pines y señales de

control asociado

Transaction-Level Modeling

34

Transaction-Level Modeling (TLM)

Por ejemplo si enviamos datos por una FIFO:
1. Esperamos a que no esté llena
2. Ponemos el dato
3. Activamos write_enable
4. Esperamos un ciclo de reloj
5. Desactivamos write_enable

Queremos separar el envío del dato (fifo_write) del
movimiento de pines (full, write_enable, datai)

Transaction-Level Modeling

35

fifo_write(data);

Transaction-Level Modelng

36

← data se propaga
por el interfaz

← movimiento de
 pines

Arquitectura de un testbench TLM

Transaction-Level Modeling

37

Generator Driver UUT Monitor Printer /
Checker

T T

¿Cómo se hace?

Definimos un record con los datos asociados
a cada canal:
type input_tran is
 record
 a : std_logic_vector (7 downto 0);

 b : std_logic_vector (7 downto 0);
 op : op_type;
 end record;

Transaction-Level Modeling

38

¿Cómo se hace?

● Definimos entidad (basada en processes
y/o procedures) para convertir las
transacciones en movimiento de pines
○ Driver

● Describimos entidad (basada en
processes/procedures) para convertir el
movimiento de pines en transacciones
○ Monitor

Transaction-Level Modeling

39

Plan de pruebas

Ahora es más fácil definir un plan de
pruebas:

● Ante X transacción(es) de entrada, se
espera Y transacción(es) de salida

Más información en el Tema “Diseño de
planes de pruebas”

Transaction-Level Modeling

40

Contenido

 Capacidades de Verificación Funcional

41

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Self-checking Testbenches
● En lugar de comprobar a mano las formas

de onda, insertamos en el testbench
comprobaciones de:
○ Si los movimientos de pines son correctos

(assertions del protocol monitor)
○ Si los datos de salida son correctos

● Predictor: predice las transacciones de
salida esperadas

● Checker: comprueba si las transacciones
son correctas

Self-checking Testbenches

42

Diseño del predictor+checker
Dos opciones:

1. Generar ficheros de salida ‘gold’
provenientes de un modelo de alto nivel
○ Por ejemplo, para crosscheck con Matlab/octave

2. Integrar modelo de alto nivel en la simulación
○ Modelo realizado en VHDL o (System)Verilog
○ Interfaz QuestaSim-Matlab
○ Interfaz VHDL-C (GHDL, QuestaSim)
○ Python (CoCoTb)

Self-checking Testbenches

43

Self-checking Testbenches

44

Generator Driver UUT Monitor CheckerT T

PredictorT T (expected)

Agente de verificación

Driver + Monitor

45

Agent

Monitor Driver

Sequencer Sequence

Interface

TranTran

Contenido

 Capacidades de Verificación Funcional

46

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Estímulos automáticos
Si tenemos un testbench que incluye un
modelo de alto nivel con el que comparar:

● Podemos generar estímulos aleatorios
● ‘Test random’ como contraposición a ‘test

dirigido’
● En realidad es ‘constrained random’

porque se aplican restricciones a los
estímulos generados

Automatic Stimulus

47

Contenido

 Capacidades de Verificación Funcional

48

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Alcance Funcional
Code coverage es muy útil pero NO nos
dice:
● Si la ejecución fue correcta o no
● Si hemos probado todos los ‘corner

cases’: valores, rangos, etc
● Si estamos aplicando los estímulos en

secuencias correctas
Functional coverage indica si estamos
cubriendo todo el plan de pruebas

Functional Coverage

49

Alcance Funcional
Ejemplo:
● Multiplicador 16 bits, 4G casos posibles
● Al menos deberíamos probar:

○ positivo * positivo
○ positivo * negativo
○ negativo * positivo
○ negativo * negativo
○ positivo * cero
○ negativo * cero
○ cero * positivo
○ cero * negativo
○ cero * cero

Functional Coverage

50

¿Cómo se hace?
● Se definen ‘bins’ (contenedores)
● Cuando se genera la transacción de entrada

se anota a qué bin pertenece la transacción
generada

● Al final de la simulación se genera un
informe del coverage de cada bin (número
de veces que se alcanza cada una)

Normalmente se utilizan packages de terceros
que ya dan esta funcionalidad (OSVVM
CoveragePkg en VHDL)

Functional Coverage

51

Contenido

 Capacidades de Verificación Funcional

52

● ¿Qué es la verificación?
● ¿Por qué verificar?
● 0.- Test dirigido
● 1.- Code coverage
● 2.- Assertions
● 3.- Modelado a nivel de transacción
● 4.- Self-checking testbenches
● 5.- Estímulos automáticos
● 6.- Functional coverage
● Bibliografía

Bibliografía

● Ray Salemi, FPGA Simulation: A
Complete Step-by-Step Guide. Boston
Light Press, 2009

● Ray Salemi, ‘Evolving FPGA verification
capabilities’, disponible en
www.verificationacademy.com

53

http://www.verificationacademy.com

Resultados de aprendizaje
● ¿Para qué sirven las métricas de verificación?
● Diferencias entre code coverage y functional

coverage
● ¿Por qué tiene sentido hacer test con entradas

aleatorias con restricciones (constrained
random)?

● Conocer la importancia de los assertions
● Conocer qué es el modelado a nivel de

transacción y cómo influye en la construcción de
testbenches estructurados

54

