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Teaching context
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B02: Advanced Programmable Logic Systems
● Tema 1: FPGA architecture
● Tema 2: Advanced digital design methodologies
● Tema 3: Advanced VHDL
● Tema 4: Verification capabilities for digital circuits

Required prior knowledge:
● Basic VHDL
● Advanced VHDL



Learning objectives
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● Understand the limitations of traditional 
testbenches

● Learn the most common verification 
metrics, such as code coverage and 
functional coverage

● Understand the concept of 
Transaction-Level Modeling

● Acquire the conceptual capabilities to 
build a structured testbench step by step
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What is verification?
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Ensure that the developed implementation is 
actually compliant with the specifications

Specifications Implementation

Design

Verification
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Some good reasons…
● Verification gap
● Mental health
● Verification can be between 50% and 80% of total 

development time
● ASIC manufacturing costs
● Industries where bugs and errors must be avoided 

at all costs: space, aeronautics, biomedicine, 
nuclear …

● Difficulty in diagnosing and fixing faults on the 
FPGA prototype

● Actually finishing projects on time

Why verify?
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Why learn verification?

Motivation
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‘Traditional’ testing
Typical testbench:
● Manually defined stimuli
● Always the same stimuli
● Verification by visually inspecting the 

waveform

This approach does not scale for complex 
tests
E.g., 200K stimuli and 1M clock cycles of 
waveforms to check

Traditional tests
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Directed vs random testing
● Tests can be of two types:

○ Directed
■ Predetermined stimuli
■ (We may have pre-calculated the expected 

output)
○ Random

■ Stimuli generated each time the simulation is 
run

■ (How do I know if the output is correct?)

Traditional tests
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When to stop?

● In both cases, it's hard to be sure we've 
tried everything!

● How do we know when we have finished 
verifying?

Traditional tests
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An automated technique

● The simulator does this by itself, by using 
certain options when compiling the 
simulation executables.

● Supported by ModelSim/Questa, Aldec, 
Vivado XSim, GHDL (partially), etc.

Code Coverage
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Identify code that
has not been tested

● Mnemonic:
“Some Beers For Extra Courage”

● Statement
● Branch
● FSM
● Expression
● Condition

Code Coverage
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Statement Coverage

● Which statements were executed and 
which were not

● A statement is anything that ends with a 
semicolon.

● One statement (at most) per line makes 
calculating coverage easier for the 
simulator.

Code Coverage
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Branch Coverage

● We might enter an if statement, but which 
if/elsif/else statement do we exit 
through? Which 'when X =>' are we 
actually entering into?

● Evaluates whether the different branches 
of our code have been reached

Code Coverage
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Branch Coverage
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FSM Coverage

● When verifying state machines, we want 
to know if we have covered:
○ The states
○ The possible transitions between states¡

● For the ‘when others =>’ an exception is 
typically needed
○ This is called “code coverage exclusion”

Code Coverage
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Expression Coverage
When we assign:

output <= a OR (b AND c);

We want to make sure that we have tested all 
cases

Code Coverage
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If output = ‘0’...
● Is it because a, b = ‘0’?
● Is it because a, c = ‘0’?

If output = ‘1’...
● Is it because a = ‘1’ ?
● Is it because b = ’1’

and c = ‘1’ ?



Condition Coverage
Similar to Expression Coverage, but in 
conditions instead of assignments:
if(a='1' OR (b='1' AND c='1')) then

● ¿a = ‘1’?
● ¿b=’1’ and c=’1’?

else

● ¿a = ‘0’ and b = ‘0’?
● ¿a = ‘0’ and c = ‘0’?

Code Coverage
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FEC : Focused Expression Coverage

Condition Coverage
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Notifies us if a condition does not 
hold

assert condition report string 

severity severity_level;

4 severity levels:
● note
● warning
● error
● failure (stops simulation)

Assertions
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Are they synthesizable?

● The are not synthesizable, but they don’t 
impede synthesis

● The synthesizer, in general, doesn’t 
consider assertions
○ It can only consider those assertions whose 

condition is static (for example, to avoid 
synthesis with invalid GENERIC values), and 
makes the check in synthesis time

● They are only considered by the simulator

Assertions
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Assertion types
● Firewall assertions

○ To ensure your blocks are being used correctly
○ Typically added by the design engineer

● Protocol monitor
○ To ensure different blocks are communicating 

correctly (in compliance to a specific protocol)
○ Typically added by the verification engineer
○ A protocol monitor is more than assertions

(Both use the same VHDL assert statement)

Assertions
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Examples

● En VHDL:
assert (cont >= 0 and cont <= 7)

report "cont overflow, should 

never happen!" severity failure;

There are assertions in other languages 
such as PSL or SystemVerilog

Assertions
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assert DATA_LENGTH > 0

report "fadapt : DATA_LENGTH must be a positive 

non-zero integer"

severity failure;

assert (NOT (ifull = '1' and wr_en='1' and 

falling_edge(clk)))

report "fadapt : Trying to write in a full fifo: data 

will be lost. Check throughput of blocks"

severity failure;

assert (NOT (empty = '1' and rd_en='1' and 

falling_edge(clk)))

report "fadapt : Trying to read from an empty fifo: 

invalid data will be processed"

severity failure;
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If the condition is complex,
better inside an if

● We can also use report without assert:

if (output /= expected) then
  report (“error in data”)
  severity error;
end if;

Assertions
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Transaction-Level Modelling (TLM)

Is to elevate the abstraction level in 
verification, separating:
● Data that move through interfaces
of
● The pin movement of data and associated 

control signals

Transaction-Level Modeling
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Transaction-Level Modelling (TLM)

For example, when we send data through a 
FIFO, we:
1. Wait until the FIFO is not full
2. Drive the data
3. Drive write_enable
4. Wait for a single clock cycle
5. Deactivate write_enable

We want to separate the sending of the data (fifo_write) 
from the pin movement (full, write_enable, datai)

Transaction-Level Modeling
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Transaction-Level Modelling (TLM)
fifo_write(data);

Transaction-Level Modeling
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← data propagates 
through the interface

← associated pin
     movement



Architecture of a TLM testbench

Transaction-Level Modeling
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Generator Driver UUT Monitor Printer / 
Checker

T T



How to do it?

Define a record with the data associated to 
each channel:
type input_tran is
  record
    a  : std_logic_vector (7 downto 0);

    b  : std_logic_vector (7 downto 0);
    op : op_type;
  end record;

Transaction-Level Modeling
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How to do it?

● Describe an entity (based on processes 
and/or procedures) to convert 
transactions into pin movement
○ Driver

● Describe an entity (based on processes 
and/or procedures) to convert pin 
movement into transactions
○ Monitor

Transaction-Level Modeling

39



Test plan

Now, defining a test plan is easier:

● Given X incoming transaction(s), Y 
outgoing transaction(s) are expected

More information in the lesson “Designing 
test plans”

Transaction-Level Modeling
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Self-checking Testbenches
● Instead of manually checking the 

waveforms, we insert the following checks 
into the testbench:
○ Whether the pin movements are correct 

(assertions from the protocol monitor)
○ Whether the output data is correct

● Predictor: predicts expected output 
transactions

● Checker: verifies if the transactions are 
correct

Self-checking Testbenches
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Design of predictor+checker
Two options:

1. Generate 'gold' output files from a high-level 
model
○ For example, for crosscheck with Matlab/octave

2. Integrate the high-level model into the 
simulation
○ Model implemented in VHDL or (System)Verilog
○ QuestaSim-Matlab interface
○ VHDL-C interface (GHDL, QuestaSim)
○ Python (CoCoTb)

Self-checking Testbenches
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Self-checking Testbenches
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Generator Driver UUT Monitor CheckerT T

PredictorT T (expected)



Verification agent

Driver + Monitor
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Agent

Monitor Driver

Sequencer Sequence

Interface

TranTran
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Automatic stimulus
If we have a testbench that includes a 
high-level model which we can compare 
against:

● We can generate random stimuli.
● “Random test” as opposed to “directed test”
● Actually, it’s “constrained random” because 

restrictions are applied to the generated 
stimuli.

Automatic Stimuli
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Functional coverage
Code coverage is very useful, but it does 
NOT tell us:
● Whether the execution was successful or 

not
● Whether we have tested all the 'corner 

cases': values, ranges, etc.
● Whether we are applying the stimuli in the 

correct sequences
Functional coverage indicates whether we 
are covering the entire test plan

Functional Coverage

49



Functional Coverage
Example:
● 16-bit multiplier, 4G possible cases
● At least we should test:

○ positive * positive
○ positive * negative
○ negative * positive
○ negative * negative
○ positive * zero
○ negative * zero
○ zero * positive
○ zero * negative
○ zero * zero

Functional Coverage
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How to do it?
● Bins are defined (think of them as 

containers/categories)
● When an input transaction is generated, the 

bin to which the generated transaction belongs 
is noted

● At the end of the simulation, a report is 
generated showing the coverage of each bin 
(number of times each bin is reached)

Typically, third-party packages that already 
provide this functionality are used (OSVVM 
CoveragePkg in VHDL)

Functional Coverage
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Learning outcomes
● What are verification metrics used for?
● Differences between code coverage and 

functional coverage
● Why does it make sense to test with constrained 

random inputs?
● Understanding the importance of assertions
● Understanding what transaction-level modeling 

is and how it influences the construction of 
structured testbenches
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