
Functional verification

Hipólito Guzmán Miranda
Departamento de Ingeniería Electrónica

Universidad de Sevilla
hguzman@us.es

Acknowledgement to Ray Salemi
1

mailto:hipolito@gie.esi.us.es

Teaching context

2

B02: Advanced Programmable Logic Systems
● Tema 1: FPGA architecture
● Tema 2: Advanced digital design methodologies
● Tema 3: Advanced VHDL
● Tema 4: Verification capabilities for digital circuits

Required prior knowledge:
● Basic VHDL
● Advanced VHDL

Learning objectives

3

● Understand the limitations of traditional
testbenches

● Learn the most common verification
metrics, such as code coverage and
functional coverage

● Understand the concept of
Transaction-Level Modeling

● Acquire the conceptual capabilities to
build a structured testbench step by step

Contents

Functional Verification capabilities

4

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

Contents

Functional Verification capabilities

5

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

What is verification?

6

Ensure that the developed implementation is
actually compliant with the specifications

Specifications Implementation

Design

Verification

Contents

Functional Verification capabilities

7

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

Some good reasons…
● Verification gap
● Mental health
● Verification can be between 50% and 80% of total

development time
● ASIC manufacturing costs
● Industries where bugs and errors must be avoided

at all costs: space, aeronautics, biomedicine,
nuclear …

● Difficulty in diagnosing and fixing faults on the
FPGA prototype

● Actually finishing projects on time

Why verify?

8

Why learn verification?

Motivation

9

Contents

Functional Verification capabilities

10

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

‘Traditional’ testing
Typical testbench:
● Manually defined stimuli
● Always the same stimuli
● Verification by visually inspecting the

waveform

This approach does not scale for complex
tests
E.g., 200K stimuli and 1M clock cycles of
waveforms to check

Traditional tests

11

Directed vs random testing
● Tests can be of two types:

○ Directed
■ Predetermined stimuli
■ (We may have pre-calculated the expected

output)
○ Random

■ Stimuli generated each time the simulation is
run

■ (How do I know if the output is correct?)

Traditional tests

12

When to stop?

● In both cases, it's hard to be sure we've
tried everything!

● How do we know when we have finished
verifying?

Traditional tests

13

Contents

Functional Verification capabilities

14

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

An automated technique

● The simulator does this by itself, by using
certain options when compiling the
simulation executables.

● Supported by ModelSim/Questa, Aldec,
Vivado XSim, GHDL (partially), etc.

Code Coverage

15

Identify code that
has not been tested

● Mnemonic:
“Some Beers For Extra Courage”

● Statement
● Branch
● FSM
● Expression
● Condition

Code Coverage

16

Statement Coverage

● Which statements were executed and
which were not

● A statement is anything that ends with a
semicolon.

● One statement (at most) per line makes
calculating coverage easier for the
simulator.

Code Coverage

17

18

Branch Coverage

● We might enter an if statement, but which
if/elsif/else statement do we exit
through? Which 'when X =>' are we
actually entering into?

● Evaluates whether the different branches
of our code have been reached

Code Coverage

19

Branch Coverage

20

FSM Coverage

● When verifying state machines, we want
to know if we have covered:
○ The states
○ The possible transitions between states¡

● For the ‘when others =>’ an exception is
typically needed
○ This is called “code coverage exclusion”

Code Coverage

21

22

Expression Coverage
When we assign:

output <= a OR (b AND c);

We want to make sure that we have tested all
cases

Code Coverage

23

If output = ‘0’...
● Is it because a, b = ‘0’?
● Is it because a, c = ‘0’?

If output = ‘1’...
● Is it because a = ‘1’ ?
● Is it because b = ’1’

and c = ‘1’ ?

Condition Coverage
Similar to Expression Coverage, but in
conditions instead of assignments:
if(a='1' OR (b='1' AND c='1')) then

● ¿a = ‘1’?
● ¿b=’1’ and c=’1’?

else

● ¿a = ‘0’ and b = ‘0’?
● ¿a = ‘0’ and c = ‘0’?

Code Coverage

24

FEC : Focused Expression Coverage

Condition Coverage

25

Contents

Functional Verification capabilities

26

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

Notifies us if a condition does not
hold

assert condition report string

severity severity_level;

4 severity levels:
● note
● warning
● error
● failure (stops simulation)

Assertions

27

Are they synthesizable?

● The are not synthesizable, but they don’t
impede synthesis

● The synthesizer, in general, doesn’t
consider assertions
○ It can only consider those assertions whose

condition is static (for example, to avoid
synthesis with invalid GENERIC values), and
makes the check in synthesis time

● They are only considered by the simulator

Assertions

28

Assertion types
● Firewall assertions

○ To ensure your blocks are being used correctly
○ Typically added by the design engineer

● Protocol monitor
○ To ensure different blocks are communicating

correctly (in compliance to a specific protocol)
○ Typically added by the verification engineer
○ A protocol monitor is more than assertions

(Both use the same VHDL assert statement)

Assertions

29

Examples

● En VHDL:
assert (cont >= 0 and cont <= 7)

report "cont overflow, should

never happen!" severity failure;

There are assertions in other languages
such as PSL or SystemVerilog

Assertions

30

assert DATA_LENGTH > 0

report "fadapt : DATA_LENGTH must be a positive

non-zero integer"

severity failure;

assert (NOT (ifull = '1' and wr_en='1' and

falling_edge(clk)))

report "fadapt : Trying to write in a full fifo: data

will be lost. Check throughput of blocks"

severity failure;

assert (NOT (empty = '1' and rd_en='1' and

falling_edge(clk)))

report "fadapt : Trying to read from an empty fifo:

invalid data will be processed"

severity failure;
31

If the condition is complex,
better inside an if

● We can also use report without assert:

if (output /= expected) then
 report (“error in data”)
 severity error;
end if;

Assertions

32

Contents

Functional Verification capabilities

33

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

Transaction-Level Modelling (TLM)

Is to elevate the abstraction level in
verification, separating:
● Data that move through interfaces
of
● The pin movement of data and associated

control signals

Transaction-Level Modeling

34

Transaction-Level Modelling (TLM)

For example, when we send data through a
FIFO, we:
1. Wait until the FIFO is not full
2. Drive the data
3. Drive write_enable
4. Wait for a single clock cycle
5. Deactivate write_enable

We want to separate the sending of the data (fifo_write)
from the pin movement (full, write_enable, datai)

Transaction-Level Modeling

35

Transaction-Level Modelling (TLM)
fifo_write(data);

Transaction-Level Modeling

36

← data propagates
through the interface

← associated pin
 movement

Architecture of a TLM testbench

Transaction-Level Modeling

37

Generator Driver UUT Monitor Printer /
Checker

T T

How to do it?

Define a record with the data associated to
each channel:
type input_tran is
 record
 a : std_logic_vector (7 downto 0);

 b : std_logic_vector (7 downto 0);
 op : op_type;
 end record;

Transaction-Level Modeling

38

How to do it?

● Describe an entity (based on processes
and/or procedures) to convert
transactions into pin movement
○ Driver

● Describe an entity (based on processes
and/or procedures) to convert pin
movement into transactions
○ Monitor

Transaction-Level Modeling

39

Test plan

Now, defining a test plan is easier:

● Given X incoming transaction(s), Y
outgoing transaction(s) are expected

More information in the lesson “Designing
test plans”

Transaction-Level Modeling

40

Contents

Functional Verification capabilities

41

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

Self-checking Testbenches
● Instead of manually checking the

waveforms, we insert the following checks
into the testbench:
○ Whether the pin movements are correct

(assertions from the protocol monitor)
○ Whether the output data is correct

● Predictor: predicts expected output
transactions

● Checker: verifies if the transactions are
correct

Self-checking Testbenches

42

Design of predictor+checker
Two options:

1. Generate 'gold' output files from a high-level
model
○ For example, for crosscheck with Matlab/octave

2. Integrate the high-level model into the
simulation
○ Model implemented in VHDL or (System)Verilog
○ QuestaSim-Matlab interface
○ VHDL-C interface (GHDL, QuestaSim)
○ Python (CoCoTb)

Self-checking Testbenches

43

Self-checking Testbenches

44

Generator Driver UUT Monitor CheckerT T

PredictorT T (expected)

Verification agent

Driver + Monitor

45

Agent

Monitor Driver

Sequencer Sequence

Interface

TranTran

Contents

Functional Verification capabilities

46

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

Automatic stimulus
If we have a testbench that includes a
high-level model which we can compare
against:

● We can generate random stimuli.
● “Random test” as opposed to “directed test”
● Actually, it’s “constrained random” because

restrictions are applied to the generated
stimuli.

Automatic Stimuli

47

Contents

Functional Verification capabilities

48

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

Functional coverage
Code coverage is very useful, but it does
NOT tell us:
● Whether the execution was successful or

not
● Whether we have tested all the 'corner

cases': values, ranges, etc.
● Whether we are applying the stimuli in the

correct sequences
Functional coverage indicates whether we
are covering the entire test plan

Functional Coverage

49

Functional Coverage
Example:
● 16-bit multiplier, 4G possible cases
● At least we should test:

○ positive * positive
○ positive * negative
○ negative * positive
○ negative * negative
○ positive * zero
○ negative * zero
○ zero * positive
○ zero * negative
○ zero * zero

Functional Coverage

50

How to do it?
● Bins are defined (think of them as

containers/categories)
● When an input transaction is generated, the

bin to which the generated transaction belongs
is noted

● At the end of the simulation, a report is
generated showing the coverage of each bin
(number of times each bin is reached)

Typically, third-party packages that already
provide this functionality are used (OSVVM
CoveragePkg in VHDL)

Functional Coverage

51

Contents

Functional Verification capabilities

52

● What is verification?
● Why verify?
● 0.- Directed testing
● 1.- Code coverage
● 2.- Assertions
● 3.- Transaction-Level Modeling
● 4.- Self-checking testbenches
● 5.- Automatic stimuli
● 6.- Functional coverage
● Bibliography

Bibliography

● Ray Salemi, FPGA Simulation: A
Complete Step-by-Step Guide. Boston
Light Press, 2009

● Ray Salemi, ‘Evolving FPGA verification
capabilities’, available at
www.verificationacademy.com

53

http://www.verificationacademy.com

Learning outcomes
● What are verification metrics used for?
● Differences between code coverage and

functional coverage
● Why does it make sense to test with constrained

random inputs?
● Understanding the importance of assertions
● Understanding what transaction-level modeling

is and how it influences the construction of
structured testbenches

54

