Functional verification

Hipolito Guzman Miranda
Departamento de Ingenieria Electronica
Universidad de Sevilla
hguzman@us.es

Acknowledgement to Ray Salemi

mailto:hipolito@gie.esi.us.es

Teaching context

B02: Advanced Programmable Logic Systems

e Tema 4: Verification capabilities for digital circuits

Required prior knowledge:
e Basic VHDL
e Advanced VHDL

Learning objectives

e Understand the limitations of traditional
testbenches

e |earn the most common verification
metrics, such as code coverage and
functional coverage

e Understand the concept of
Transaction-Level Modeling

e Acquire the conceptual capabilities to
build a structured testbench step by step

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

What is verification?

N N

Specifications Implementation

D &

Verification

Ensure that the developed implementation is
actually compliant with the specifications

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

Why verify?

Some good reasons...

Verification gap

Mental health

Verification can be between 50% and 80% of total
development time

ASIC manufacturing costs

Industries where bugs and errors must be avoided
at all costs: space, aeronautics, biomedicine,
nuclear ...

Difficulty in diagnosing and fixing faults on the
FPGA prototype

Actually finishing projects on time 8

Motivation

Why learn verification?

Upload your resume

indeed Find jobs Company reviews Find salaries

What Where

Job title, keywords, or company City, state, or zip code

Verification engineer

Q

Sort by:

relevance - date

Salary Estimate
$70,000 4+ (17885)
$80,000+ (15639)
$90,000, (12300)
$100,000+ (8576)
$115,000+ (3912)

Job Type
Full-time (21360)
Internship (904)
Contract (833)
Temporary (636)
Part-time (483)

Commission (33)

[Page 1 0f 22,569 jobs @]

IP Verification Engineer new
Intel 4.1

Hillsboro, OR 97124

Verification of complex server IP designs us
will be responsible for, although not limited {

Today . Savejob . more..

Design Verification Engineer - E
Apple 4.2
Santa Clara Valley, CA 95014

Pre-silicon digital verification engineer for m
constrained random verification techniques

30+ days ago - Savejob . more...

Design Verification Engineer ne

Arnnantirrna | alhese 711 C \IlnAa & 0 L

@ m Advanced Job Search

ASIC Design Verification Engineer, Processors new

Google 4.3

Sunnyvale, CA

Experience with security-focused verification methods. You will collaborate closely with design and verification engineers in active projects and perform hands...

Save job

ASIC Design Verification Engineer new

Google 4.3

Sunnyvale, CA +1 iocation

You will collaborate closely with design and verification engineers in active projects and perform hands-on verification. 4 years of relevant experience.

5days ago - Save job

Verification Engineer

Ambarella 3.6

Santa Clara, CA 95054

Perform Block Verification of Ambarella’s very complex CABAC compression block. Perform system-level verification of Ambarella’s Video Input block as well as...

30+ days ago - Save job

Design Verification Engineer
Apple 4.2
Santa Clara Valley, CA 95014 +5 iocations

Experience with mixed signal verification methodology. Deep knowledge of formal verification methodology. Develop verification plans for all features under your...

Design Verification Engineer
Talent 101 4.0
Santa Clara, CA 95051 +1 iocation

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

10

Traditional tests

‘Traditional’ testing

Typical testbench:

e Manually defined stimuli

e Always the same stimuli

e \erification by visually inspecting the
waveform

This approach does not scale for complex
tests

E.g., 200K stimuli and 1M clock cycles of
waveforms to check

11

Traditional tests

Directed vs random testing

e Tests can be of two types:
o Directed
m Predetermined stimuli
m (We may have pre-calculated the expected
output)
o Random
m Stimuli generated each time the simulation is
run
m (How do | know if the output is correct?)

12

Traditional tests

When to stop?

e In both cases, it's hard to be sure we've
tried everything!

e How do we know when we have finished
veriftying”?

13

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

14

Code Coverage

An automated technique

e The simulator does this by itself, by using
certain options when compiling the
simulation executables.

e Supported by ModelSim/Questa, Aldec,
Vivado XSim, GHDL (partially), etc.

15

Code Coverage

Identify code that
has not been tested

e Mnemonic:
“Some Beers For Extra Courage”

Statement
Branch
FSM
Expression
Condition

16

Code Coverage

Statement Coverage

e \Which statements were executed and
which were not

e A statement is anything that ends with a
semicolon.

e One statement (at most) per line makes
calculating coverage easier for the
simulator.

17

3 Questa Coverage Report - Mozilla Firefox — [=

File Edit View History Bookmarks Tools Help
/ Questa Coverage Report x| ¢

(-7 “ file:///home/hipolito/devel/edelweiss/build_vsim/coverage/pages/_frametoph v & $ @& & v & = f =

—-_— e ——— S - -

L X G 144 32 n_ppdu <= PHR (bit count); (A
. ‘ 145 n state <= count cycles header;
| - m— 146 if (bit count = 7) then
147 n state <= wait for data;
: 148 n_byte count <= 0;
! | <= 0>
- mth bizsymb 2 S —
=-@edelweiss_common 151 end if;
-@vhdl_verification (no coverg 152 when wait_for_data =>
- = i 153 if (remaining = 0) then
: llmage___p g 154 n state <= idle;
~-.txt_utll 155 n count <= THROUGHPUT - 3; -- conserve throughput between frames
=-Etb d ff 156 elsif (count > 1) then
: e 157 1275534 n count <= count -1;
=-Mtb_fadapt , 158 elsif (not empty = '1') then
~Mclkmanager_inst 159 : rians VIS
~-@datagen inst 160 Z n_count <= THROUGHPUT -1;
: i 161 n state <= data;
: 162 end if;
~mMdatacompare_inst 163 hien it 5w
- Mthroughputchecker_inst 164 n_ppdu <= fifo ppdu;
=-Jtb fifo 165 nippdufvalid <= 'L
B tb_- | hapi 166 n_remaining <= remaining-1;
“-Mtb_pulse_shaping 167 n state <= wait for data;
=-mMtb qdelay 168 when others =
.tb Symecl'“p 169 n ts)‘;ate <= idle;
= 170 n _bit count <= 0;
”.tb—tOp—tx . 171 n_byte count <= 0;
=-Mtb upsampling 172 rden <= '0';
=-@th dem filter 173 n count <= THROUGHPUT -1;
' A7 = ; 174 end case;
Etb downsampling e G précess:
ltb_tap 176
177
178 sinc: process(clk, rst)
179 begin
180 if (rst = '1') then
181 state <= idle;
182 bit count <= 0;
183 byte count <= 0;
184 ppdu <= '0';

185 ppdu valid <= '0':

Code Coverage

Branch Coverage

e \We might enter an if statement, but which
if/elsif/else statement do we exit
through? Which 'when X =>"are we
actually entering into?

e Evaluates whether the different branches
of our code have been reached

19

Branch Coverage

case state is 83.33%

Branch Source Hits Status
TRUE when idle => 13| Covered
TRUE when count cycles header =>| 79676 Covered
TRUE when header => 192/ Covered
TRUE when wait for data => 1278618 |Covered
TRUE when data => 5048 Covered
TRUE when others => 0| ZERO

if ((Looped = true) or (Head /= Tail)) then 50.00%
Branch Source Hits Status
IF if ((Looped = true) or (Head /= Tail)) then 385 Covered
ALL FALSE if ((Looped = true) or (Head /= Tail)) then 0| ZERO

20

Code Coverage

FSM Coverage

e \When verifying state machines, we want

to know if we have covered:
o The states
o The possible transitions between states;

e Forthe ‘when others =>"an exception is
typically needed

o This is called “code coverage exclusion”
21

state 83.33%
; States / Transitions Hits Status
0% [State: idle 390214/ Covered
; Trans: idle -> count cycles header 4 /Covered
Trans: idle -> idle 390209 Covered
State: count cycles header 79676/ Covered
Trans: count cycles header -> header 192 Covered
Trans: count cycles header -> idle 0/ ZERO
Trans: count cycles header -> count cycles header, 79484 Covered
State: header 192|Covered
Trans: header -> count cycles header 188|Covered
Trans: header -> wait for data 4/Covered
Trans: header -> idle 0 ZERO
Trans: header -> header 0| ZERO
State: wait for data 1673819 Covered
Trans: wait for data -> idle 3|Covered
Trans: wait for data -> data 3080/ Covered
Trans: wait for data -> wait for data 1670735/ Covered
State: data 3080/ Covered
Trans: data -> wait for data 3080/ Covered
Trans: data -> idle 0 ZERO

Trans: data -> data 0/ ZERO

22

Code Coverage

Expression Coverage
When we assign:

output <= a OR (b AND c);

If output ="1"... If output = ‘0’...

o |sitbecausea=‘1"7? e Isitbecausea,b='0"
e |sitbecauseb="1 e |sitbecausea,c=07

andc="17

We want to make sure that we have tested all
cases 23

Code Coverage

Condition Coverage

Similar to Expression Coverage, but in
conditions instead of assignments:

if(a="1" OR (b="1" AND c="'1")) then
e ;ja="'17?
e ;b="1"andc="1"?

else

e ;ja='0Candb='0"7?
e ;ja='0Candc=°0"7

24

Condition Coverage

FEC : Focused Expression Coverage

FEC Condition: _if (i_index = 30 AND ¢ _index = 31)

ko 50.00%
Input Term Covered Reason For No Coverage Hint

(i index = 30) Yes

(q index = 31) No ' 0' not hit Hit "' 0'
Rows FEC Target Hits Mat;:tlag:nlzput
Row 1 (i index = 30) 0 2 {0-}
Row 2 (i index = 30) 1 2 110
Row 3 (q index = 31) 0 0 {10}
Row 4 (q index =31) 1 2 {11}

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

26

Assertions

- Notifies us if a condition does not
hold

assert condition report string
severity severity level;

4 severity levels:
e note

e warning

® error

e failure (stops simulation)

27

Assertions

Are they synthesizable?

The are not synthesizable, but they don't
Impede synthesis
The synthesizer, in general, doesn’t

consider assertions

o It can only consider those assertions whose
condition is static (for example, to avoid
synthesis with invalid GENERIC values), and
makes the check in synthesis time

They are only considered by the simulator

28

Assertions

Assertion types

e Firewall assertions
o To ensure your blocks are being used correctly
o Typically added by the design engineer

e Protocol monitor
o To ensure different blocks are communicating
correctly (in compliance to a specific protocol)
o Typically added by the verification engineer
o A protocol monitor is more than assertions

(Both use the same VHDL assert statement)

29

Assertions

Examples

e En VHDL.:

assert (cont >= 0 and cont <= 7)
report "cont overflow, should

never happen!" severity failure;

There are assertions in other languages
such as PSL or SystemVerilog

30

assert DATA LENGTH > ©

report "fadapt : DATA LENGTH must be a positive
non-zero integer”

severity failure;

assert (NOT (ifull = '1' and wr_en='1"' and

falling edge(clk)))

report "fadapt : Trying to write in a full fifo: data
will be lost. Check throughput of blocks"”

severity failure;

assert (NOT (empty = '1' and rd en='1"' and

falling edge(clk)))

report "fadapt : Trying to read from an empty fifo:
invalid data will be processed”

severity failure;
31

Assertions

If the condition is complex,
better inside an if

e \We can also use report without assert:

if (output /= expected) then
report (“error in data”)
severity error;

end if;

32

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

33

Transaction-Level Modeling

Transaction-Level Modelling (TLM)

Is to elevate the abstraction level Iin
verification, separating:

e Data that move through interfaces
of

e The pin movement of data and associated
control signals

34

Transaction-Level Modeling

Transaction-Level Modelling (TLM)

For example, when we send data through a

FIFO, we:
1. Wait until the FIFO is not full

2. Drive the data

3. Drive write _enable

4. Wait for a single clock cycle
5. Deactivate write _enable

We want to separate the sending of the data (fifo_write)
from the pin movement (full, write_enable, datai) .

Transaction-Level Modeling

Transaction-Level Modelling (TLM)

fifo write(data); — data propagates
through the interface

clk | // < associated pin

datai W%dataW movement
P
w |\

36

Generator

~

T

/

Driver

UuT

Monitor

N Z

-

\

Printer /
Checker

~

/

37

Transaction-Level Modeling

How to do it?

Define a record with the data associated to
each channel:

type input tran is
record
a : std logic vector (7 downto 0);

b : std logic vector (7 downto 0);

op : op_type;
end record;

38

Transaction-Level Modeling

How to do it?

e Describe an entity (based on processes
and/or procedures) to convert
transactions into pin movement

o Driver
e Describe an entity (based on processes

and/or procedures) to convert pin

movement into transactions
o Monitor

39

Transaction-Level Modeling

Test plan

Now, defining a test plan is easier:

e Given X incoming transaction(s), Y
outgoing transaction(s) are expected

More information in the lesson “Designing
test plans”

40

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

41

Self-checking Testbenches

Self-checking Testbenches

e Instead of manually checking the
waveforms, we insert the following checks

into the testbench:

o Whether the pin movements are correct
(assertions from the protocol monitor)

o Whether the output data is correct

e Predictor: predicts expected output
transactions
e Checker: verifies if the transactions are

correct

42

JFoPe, Self-checking Testbenches

> <
S 0 S

4 Design of predictor+checker

Two options:

1. Generate 'gold’' output files from a high-level

model
o For example, for crosscheck with Matlab/octave

2. Integrate the high-level model into the

simulation

o Model implemented in VHDL or (System)Verilog
o QuestaSim-Matlab interface

o VHDL-C interface (GHDL, QuestaSim)

o Python (CoCoTb)

43

Generator

~

/

a I
T Predictor T (expected)
N J
S
a I N I
: P
Driver - UuT - Monitor T|/ Checker
N J V2N J

44

Verification agent

Agent [b
Sequencer
Sequence
v
Tran | Tran Driver + Monitor
Y (L
Monitor Driver
N N

[Interface

45

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

46

Automatic Stimuli

Automatic stimulus

If we have a testbench that includes a
high-level model which we can compare
against:

e e can generate random stimuli.
e “Random test” as opposed to “directed test”

e Actually, it's “constrained random” because
restrictions are applied to the generated

stimuli.

47

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

48

Functional Coverage

Functional coverage

Code coverage is very useful, but it does
NOT tell us:

e \Whether the execution was successful or
not

e \Whether we have tested all the 'corner
cases'’: values, ranges, etc.

e \Whether we are applying the stimuli in the
correct sequences

Functional coverage indicates whether we

are covering the entire test plan 49

Functional Coverage

Functional Coverage

Example:

e 16-bit multiplier, 4G possible cases

e At least we should test:
o positive * positive
positive * negative
negative * positive
negative * negative
positive * zero
negative * zero
zero * positive
zero * negative
Zero * zero 50

O O O 0O 0O O O O

Functional Coverage

How to do it?

Bins are defined (think of them as
containers/categories)

e \When an input transaction is generated, the
bin to which the generated transaction belongs
IS noted

e At the end of the simulation, a report is
generated showing the coverage of each bin
(number of times each bin is reached)

Typically, third-party packages that already
provide this functionality are used (OSVVM
CoveragePkg in VHDL) 5

Functional Verification capabilities

Contents

What is verification?

Why verify?

0.- Directed testing

1.- Code coverage

2.- Assertions

3.- Transaction-Level Modeling
4 .- Self-checking testbenches
5.- Automatic stimuli

6.- Functional coverage
Bibliography

52

Bibliography

e Ray Salemi, FPGA Simulation: A
Complete Step-by-Step Guide. Boston

Light Press, 2009
e Ray Salemi, ‘Evolving FPGA verification

capabilities’, available at
www.verificationacademy.com

53

http://www.verificationacademy.com

Learning outcomes

What are verification metrics used for?

Differences between code coverage and
functional coverage

Why does it make sense to test with constrained
random inputs?

Understanding the importance of assertions

Understanding what transaction-level modeling
IS and how it influences the construction of
structured testbenches

54

