VHDL avanzado

Hipolito Guzman Miranda
Departamento de Ingenieria Electronica
Universidad de Sevilla
hguzman@us.es

mailto:hipolito@gie.esi.us.es

Contexto docente

B02: Sistemas Logicos Programables Avanzados

e Tema 3: VHDL avanzado

Conocimientos previos requeridos:

e VHDL basico
o Diseno con dos procesos

Objetivos de aprendizaje

e Ampliar el vocabulario de sentencias y
palabras clave en VHDL

e Familiarizarse con el potencial de VHDL
para elevar el nivel de abstraccion en
diseno, sin perder de vista el
comportamiento en sintesis

e Adquirir capacidades para reducir la
duplicidad de codigo e incrementar su
reutilizabilidad

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

Motivacion

El VHDL que conocéis (sintesis)

comb: process (<lista _de sensibilidad>)
if ... elsif ... else ... end if:
case ... when => ... end case,;

sinc: process (rst, clk)
if (rst="1") then ...
elsif (rising_edge(clk) then ...
end if;

Instancias de componentes y entidades

Motivacion

El VHDL que conocéis (simulacion)

clk_process: process
e invertir clk, wait for clk_period/2

stim_process: process

e Secuencia de estimulos generada
manualmente (muy tedioso en tests
complejos)

Motivacion

‘Cargo cult programming’

En C, cddigo descuidado normalmente
produce malos resultados, y es mas dificil
de depurar y modificar

En VHDL, codigo descuidado puede
producir hardware que funcione, pero
también sera dificil de depurar y modificar ->
codigo que nadie quiere tocar

Motivacion

VHDL es un lenguaje de ALTO nivel

e Describid a un mayor nivel de abstraccion

e Dejad que el sintetizador infiera el circuito

e El| hardware sintetizado funciona igual de
bien (o mejor), pero el codigo es mas
sencillo de leer y mantener

Pero vayamos poco a poco...

Motivacion

Unas palabras de advertencia

Todo lo que se explica aqui cuesta recursos
hardware (en implementacion)

Las operaciones no se realizan
secuencialmente sino concurrentemente

Paradigma de diseno es el mismo:

operaciones se convierten en logica -> pero
tendréis mas recursos para estructurar

vuestro codigo o

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

11

El tipo de dato record

“Bad programmers worry about the code. Good
programmers worry about data structures and their
relationships.” - Linus Torvalds

e Esto tambien aplica cuando describimos
hardware

e Los record(s) son un tipo de dato que esta
compuesto de otros datos

e Son el equivalente VHDL a los struct de C

e Agrupad senales o puertos del mismo contexto
en record(s) 12

Ejemplo: signals

type transceiver data 1is
record
data : std logic vector (15 downto ©0);
valid : std logic;
end record;

signal datain, dataout : transceiver data;

13

Port (
clk
rst
data_in
data out I

)5

end transceiver;

Ejemplo: puertos

entity transceiver 1is

: in std logic;
: in std logic;

in transceiver data;

. out transceiver data;
data out Q :

out transceiver data

14

Ejemplo: puertos

entity transceiver 1is

e El record entero tiene que tener una unica
direccion (IN o OUT)

e Anadir una nueva senal al puerto solo implica
cambiar la definicion del record!

data out Q : out transceiver data

)5
end transceiver;

15

Asignhacion y uso
Acceder a record.dato :

if (data_in.valid = '1') then
data out.data <= data_in.data;
data _out.valid <= "1°';

end if;

16

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

17

Functions

Leer senales, devolver valor

function invert (data: std logic) return std logic is
begin
return not data;
end function invert;

Cada llamada a la funcion generara un inversor
al sintetizar!

18

Functions

Ejemplos

function sum (a: integer; b: integer)
return integer is
begin
return a+b;
end function sum;

Cada llamada a la funcion generara un
sumador al sintetizar

19

Functions

Ejemplos

function sel (cond: boolean; if true,
if false: integer) return integer is
begin
if cond = true then
return (if _true);
else
return (if false);
end if;
end function sel;

20

Functions

¢ Por que usarlas?

Ya que producen el mismo hardware,
merece la pena usarlas para:

e Encapsular operaciones que reutilizas
e Multiplexar o invertir generics, constants o
senales en un generic map o port map

Insisto: no son subrutinas, son hardware!

21

Procedures

Multiples entradas,
multiples salidas

Aparentemente similares a los functions
pero:

e Tienen parametros INy OUT

e Pueden leer de los IN y modificar los OUT

22

Procedures

procedure vect_write
(constant data: in std logic vector(31 downto 0);
signal vector ctrl : out fifo_ctrl) is
begin
vector_ctrl.datai <= data;
vector_ctrl.wr _en <= '1';
wait for 10 ns;
vector_ctrl.wr_en <= '0'; --after 10 ns;
end procedure;

(No es sintetizable ya que contiene un wait)
23

Functions y Procedures

Diferencias:

e Las funciones no modifican nada,
simplemente devuelven un valor

data <= a_function (other_data);

e Los procedimientos cambian el valor de
senales

my procedure (signhals _in, signals out);

24

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

25

Bucle for

for 1 in 0 to 7 loop

e El sintetizador expande el bucle durante
la sintesis

e El rango del bucle debe ser estatico (para
gue pueda sintetizarse)

e (Cada paso por el bucle no es una
‘iteracion’, sino una repeticion del hardware

26

reorder_data: process (data _in)
begin
for 1 in © to 7 loop
data out(i) <= data_in(7-1i);
end loop;
end process;

27

Es equivalente a:

reorder_data: process (data_in)
begin

data_out(@) <= data _in(7);
data_out(1) <= data_in(6);
data_out(2) <= data_in(5);
data_out(3) <= data_in(4);
data_out(4) <= data_in(3);
data_out(5) <= data_in(2);
data_out(6) <= data_in(1);
data_out(7) <= data_in(09);

end process;

28

Sentencia generate

Instanciacion condicional
de componentes

e Instancia un componente/entidad o no,
segun se cumpla o no una condicion

e Esta condicion debe ser estatica de forma
gue se sepa si se cumple durante la
sintesis

e El sintetizador es el que instancia o no el
componente

29

Sentencia generate

if condition generate

second _instance: if GENERATE_TWO=true
generate
inst2: cont port map (
clk => clk,
rst => rst,
count => count2);
end generate second instance;

30

Sentencia generate

Instanciacion multiple
de componentes

Usando for parameter in range

Al igual que antes, el sintetizador
expande el bucle durante la sintesis

El rango del bucle debe ser estatico (para
gue pueda sintetizarse)

Cada paso por el bucle no es una
‘iteracion’, sino una instancia del
componente

31

Sentencia generate

for parameter in range
generate

regdesp:
for i in 0 to 3 generate
myreg : reg port map (
clk => clk,
rst => rst,
din => data(i),
dout => data(i+l));
end generate regdesp;

32

Sentencia generate

Filtro FIR

Como conjunto de etapas

4 Yo Y Yo Y Yo Y N
X(n)
bo b1 bg b3 b4 bs be b7
Y(n)
» 71 > Z1 > Z1 > Z1 NP Z1 o> Z1 > Z1 >
- AN AN AN AN AN AN /

33

channel filter: for i in © to 23 generate
taps: tap generic map(
INPUT_WIDTH => 9,
OUTPUT_WIDTH => 10,

TRUNC_BITS => 8,
COEF => coefs(sel(i<12, i, 23-i)),
SAT _MULT_BITS => 2)
port map(
clk => clk,

rst => rst,
valid => cfilterin _valid,
input => cfilterin,
prev => d_aux(1i),
output => d_aux(i+l)
)

end generate;

34

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

35

Packages

Encapsular todo lo anterior

En un package VHDL podemos definir:

Tipos de datos
Constantes
Funciones
Procedimientos
Componentes

36

Packages

Encapsular todo lo anterior

En lugar de redeclarar todo lo que
necesitemos en cada fichero .vhd de cada
entidad, simplemente anadimos a la seccion
library:

use work.mypackage.all;

37

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package mypackage is

-- declaracidén de tipos de datos

-- declaracion de constantes

-- declaracién de componentes

-- declaracion de funciones y procedimientos
end mypackage;

package body mypackage is
-- definicion de funciones y procedimientos

end mypackage;

38

Libraries

Conjuntos de packages

Se incluyen por completitud, pero no os hara
falta crearlas para la asignatura

Por ejemplo, std logic 1164 es un
package del library IEEE:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

Vuestros packages custom pertenecen al
library work por defecto

39

Libraries

Conjuntos de packages

Para utilizar libraries de terceros,deben
compilarse/sintetizarse aparte, y en la
seccion library:

library uvvm_util;

use uvvm_util.types_ pkg.all;

use uvvm_util.string_methods_pkg.all;
use uvvm_util.adaptations_pkg.all;
use uvvm_util.methods_pkg.all;

use <library>.<package>.all;
40

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std_logic
Versiones del estandar
Conclusiones

Bibliografia

41

std_ulogic vs std_logic

std _ulogic: no resuelto
std_logic: resuelto

TYPE std ulogic IS ('U', -- Uninitialized

'X', —-- Forcing Unknown
'0', —-- Forcing O

'l', -- Forcing 1

'2', —-- High Impedance
W', —-— Weak Unknown
'L', -—-- Weak 0

'H', —-— Weak 1

I -— Don't care

SUBTYPE std logic IS resolved std ulogic;
42

std_ulogic vs std_logic

std ulogic explicado

‘9’, ‘1°: Uso normal

e Z’:Cuando necesitamos poner algo en alta impedancia (buses compartidos,
normalmente sblo se puede poner en los pines de la FPGA, que es el unico sitio
donde suele haber puertas triestado)

e ‘U’: Nos avisa en simulacion de que no hemos inicializado algo correctamente (ej:
resets mal implementados)

e ‘X’: Nos avisa en simulacion de cortocircuitos, o de operaciones realizadas sobre
valores ‘U’

e ‘L’, ‘H’: Modelado de pulldowns/pullups en simulacién

e ‘W’: Nos avisa en simulacion de cortocircuitos entre ‘L’ y ‘H’

e ‘-’:Puede usarse como ‘comodin’ al comparar vectores

(if vect = “11-0-1--” then)
Fuerte Débil Especiales

. . o - Cero logico débil - Alta impedancia
Bajo g Gors logicoritions E (Low = pulldown) Z (High impedance)

o Focn e Uno logico débil - Sin inicializar

Alto 1 Uno légico fuerte H (High = pullup) U (Uninitialized)

DESESTEEHS X Valor fuerte desconocido W Valor débil desconocido No importa

(Unknown) (Weak) (Don't care) 43

'U', 'X', 'X'['X', 'X', le, 'X', 'X', |X|
'U', 'X', 'O'['X', 'O', lOl, 'O', 'O', |X|
'U', 'X', 'X'['l', 'l', lll, '1', '1', |X|

'U', 'X', 'O', 'l', 'W', 'W', 'W', 'W', IXI
'U', 'X', 'O', 'l', 'Ll, 'W', 'L', 'W', IXI
'U', 'X', 'O', 'l', lHl, 'W', 'W', 'H', IXI

™ 2 =S N R O X C

() |
() |
() |
() |
(', 'x*, o', "'12v, 'z', 'w', 'n', 'H', 'X'"), -—— |
() |
() |
() |
() |

lUl lxl lx| lxl lxl lxl lxl lxl |X|
4 4 4 4 4 4 4 4
) ; 44

std_ulogic vs std_logic

¢ Qué significa esto?

valor a } valor a
c: std_logic ﬁ—» c: std_ulogic
valor b valor b -2

OK! c toma el valor resolve(a,b) ERROR!
e No siempre queremos e Nos sirve de chequeo
esto! (de hecho, casi en tiempo de sintesis /
nunca lo queremos) compilacién

e El sintetizador te avisa
de los multi-source

e | os simuladores no!
(aparecen ‘X’ en los
waveform)

45

std_ulogic vs std_logic

s Cuando queremos std _logic?

::::: j—» c: std_logic

OK! c toma el valor resolve(a,b)
Sintesis: Simulacion:
e Puertos e Modelado de

bidireccionales pull-ups, pull-down,
resistencias (fuera
de nuestro diseno
digital)
e Buses compartidos

46

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

47

Versiones del estandar

VHDL'87

o Primera version

e VHDL93

o Version con mayor soporte por las herramientas de sintesis
y simulacion propietarias. Introduce variables compartidas

e VHDL 2002

o Anade tipos protegidos para variables compartidas. Se
afade VHPI (VHDL Procedural Interface) en 2007

e VHDL 2008 (mas informacion aqui)

o Integracion de PSL (Property Specification Language).
Generics en tipos, paquetes y subprogramas. Soportado en
sintesis por Synopsys, y en simulacion por QuestaSim y
GHDL. Multiples mejoras de usabilidad (process (all) ;)

e VHDL 2019

o Version mas reciente (demos tiempo a las herramientas...),,

https://www.doulos.com/knowhow/vhdl_designers_guide/vhdl_2008/

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

49

Para finalizar

Conclusiones y
recomendaciones

VHDL da opciones para estructurar el codigo
de manera que sea mas mantenible

No es obligatorio usarlo todo

Aunque este encapsulado, sigue siendo HW!
Se recuerda que las herramientas de los
fabricantes normalmente generan plantillas
para todo lo mencionado anteriormente

50

VHDL avanzado

Contenido

Motivacion

Records

Functions y Procedures
Sentencias For y Generate
Packages y Libraries
std_ulogic vs std _logic
Versiones del estandar
Conclusiones

Bibliografia

51

Bibliografia

e Brian Mealy, Fabrizio Tappero, Free
Range VHDL. Free Range Factory, 2018

e The VHDL Golden Reference Guide.
Doulos, 1995

e Ricardo Jasinski, Effective Coding with
VHDL: principles and best practice. The
MIT Press, 2016

52

http://freerangefactory.org/pdf/df344hdh4h8kjfh3500ft2/free_range_vhdl.pdf
http://freerangefactory.org/pdf/df344hdh4h8kjfh3500ft2/free_range_vhdl.pdf

Resultados de aprendizaje

Saber utilizar el tipo record para
reestructurar los datos procesados por un
diseno

Diferencias entre function y procedure

Uso de for y generate para generar
Instancias de hardware

Saber que se puede mover codigo comun a
un package para evitar duplicidad de codigo
;. Cuando se debe utilizar std_ulogicy
cuando std _logic?

53

