
VHDL avanzado

Hipólito Guzmán Miranda
Departamento de Ingeniería Electrónica

Universidad de Sevilla
hguzman@us.es

1

mailto:hipolito@gie.esi.us.es

Contexto docente

2

B02: Sistemas Lógicos Programables Avanzados
● Tema 1: Arquitectura FPGAs
● Tema 2: Metodologías de diseño digital avanzado
● Tema 3: VHDL avanzado
● Tema 4: Capacidades de verificación en circuitos

digitales

Conocimientos previos requeridos:
● VHDL básico

○ Diseño con dos procesos

Objetivos de aprendizaje

3

● Ampliar el vocabulario de sentencias y
palabras clave en VHDL

● Familiarizarse con el potencial de VHDL
para elevar el nivel de abstracción en
diseño, sin perder de vista el
comportamiento en síntesis

● Adquirir capacidades para reducir la
duplicidad de código e incrementar su
reutilizabilidad

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

4

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

5

El VHDL que conocéis (síntesis)
comb: process (<lista_de_sensibilidad>)
 if … elsif ... else … end if;
 case … when => ... end case;

sinc: process (rst, clk)
 if (rst = '1') then ...
 elsif (rising_edge(clk) then ...
 end if;

Instancias de componentes y entidades

Motivación

6

El VHDL que conocéis (simulación)

clk_process: process
● invertir clk, wait for clk_period/2

stim_process: process
● Secuencia de estímulos generada

manualmente (muy tedioso en tests
complejos)

Motivación

7

‘Cargo cult programming’

En C, código descuidado normalmente
produce malos resultados, y es más difícil
de depurar y modificar

En VHDL, código descuidado puede
producir hardware que funcione, pero
también será difícil de depurar y modificar ->
código que nadie quiere tocar

Motivación

8

VHDL es un lenguaje de ALTO nivel

● Describid a un mayor nivel de abstracción
● Dejad que el sintetizador infiera el circuito
● El hardware sintetizado funciona igual de

bien (o mejor), pero el código es más
sencillo de leer y mantener

Pero vayamos poco a poco...

Motivación

9

Unas palabras de advertencia
Todo lo que se explica aquí cuesta recursos
hardware (en implementación)

Las operaciones no se realizan
secuencialmente sino concurrentemente

Paradigma de diseño es el mismo:
operaciones se convierten en lógica -> pero
tendréis más recursos para estructurar
vuestro código

Motivación

10

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

11

El tipo de dato record
“Bad programmers worry about the code. Good
programmers worry about data structures and their
relationships.” - Linus Torvalds

● Esto también aplica cuando describimos
hardware

● Los record(s) son un tipo de dato que está
compuesto de otros datos

● Son el equivalente VHDL a los struct de C
● Agrupad señales o puertos del mismo contexto

en record(s)

Records

12

Ejemplo: signals
type transceiver_data is

 record

 data : std_logic_vector (15 downto 0);

 valid : std_logic;

 end record;

signal datain, dataout : transceiver_data;

Records

13

Ejemplo: puertos
entity transceiver is

Port (

 clk : in std_logic;

 rst : in std_logic;

 data_in : in transceiver_data;

 data_out_I : out transceiver_data;

 data_out_Q : out transceiver_data

);

end transceiver;

Records

14

Ejemplo: puertos
entity transceiver is

Port (

 clk : in std_logic;

 rst : in std_logic;

 data_in : in transceiver_data;

 data_out_I : out transceiver_data;

 data_out_Q : out transceiver_data

);

end transceiver;

Records

● El record entero tiene que tener una única
dirección (IN o OUT)

● Añadir una nueva señal al puerto sólo implica
cambiar la definición del record!

15

Asignación y uso
Acceder a record.dato :

if (data_in.valid = '1') then

 data_out.data <= data_in.data;

 data_out.valid <= '1';

end if;

Records

16

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

17

Leer señales, devolver valor

function invert (data: std_logic) return std_logic is

 begin

 return not data;

 end function invert;

Cada llamada a la función generará un inversor
al sintetizar!

Functions

18

Ejemplos
function sum (a: integer; b: integer)

return integer is

 begin

 return a+b;

 end function sum;

Cada llamada a la función generará un
sumador al sintetizar

Functions

19

Ejemplos
function sel (cond: boolean; if_true,

if_false: integer) return integer is

 begin

 if cond = true then

 return (if_true);

 else

 return (if_false);

 end if;

 end function sel;

Functions

20

¿Por qué usarlas?

Ya que producen el mismo hardware,
merece la pena usarlas para:

● Encapsular operaciones que reutilizas
● Multiplexar o invertir generics, constants o

señales en un generic map o port map

Insisto: no son subrutinas, son hardware!

Functions

21

Múltiples entradas,
múltiples salidas

Aparentemente similares a los functions
pero:

● Tienen parámetros IN y OUT

● Pueden leer de los IN y modificar los OUT

Procedures

22

Ejemplo:
procedure vect_write

(constant data: in std_logic_vector(31 downto 0);

signal vector_ctrl : out fifo_ctrl) is

 begin

 vector_ctrl.datai <= data;

 vector_ctrl.wr_en <= '1';

 wait for 10 ns;

 vector_ctrl.wr_en <= '0'; --after 10 ns;

 end procedure;

(No es sintetizable ya que contiene un wait)

Procedures

23

Diferencias:

● Las funciones no modifican nada,
simplemente devuelven un valor
data <= a_function (other_data);

● Los procedimientos cambian el valor de
señales
my_procedure (signals_in, signals_out);

Functions y Procedures

24

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

25

Bucle for

for i in 0 to 7 loop

● El sintetizador expande el bucle durante
la síntesis

● El rango del bucle debe ser estático (para
que pueda sintetizarse)

● Cada paso por el bucle no es una
‘iteración’, sino una repetición del hardware

For loop

26

Ejemplo

reorder_data: process (data_in)

begin

 for i in 0 to 7 loop

 data_out(i) <= data_in(7-i);

 end loop;

end process;

For loop

27

Es equivalente a:
reorder_data: process (data_in)

begin

 data_out(0) <= data_in(7);

 data_out(1) <= data_in(6);

 data_out(2) <= data_in(5);

 data_out(3) <= data_in(4);

 data_out(4) <= data_in(3);

 data_out(5) <= data_in(2);

 data_out(6) <= data_in(1);

 data_out(7) <= data_in(0);

end process;

For loop

28

Instanciación condicional
de componentes

● Instancia un componente/entidad o no,
según se cumpla o no una condición

● Esta condición debe ser estática de forma
que se sepa si se cumple durante la
síntesis

● El sintetizador es el que instancia o no el
componente

Sentencia generate

29

if condition generate

second_instance: if GENERATE_TWO=true

generate

 inst2: cont port map (

 clk => clk,

 rst => rst,

 count => count2);

end generate second_instance;

Sentencia generate

30

Instanciación múltiple
de componentes

● Usando for parameter in range
● Al igual que antes, el sintetizador

expande el bucle durante la síntesis
● El rango del bucle debe ser estático (para

que pueda sintetizarse)
● Cada paso por el bucle no es una

‘iteración’, sino una instancia del
componente

Sentencia generate

31

for parameter in range
generate

regdesp:

 for i in 0 to 3 generate

 myreg : reg port map (

 clk => clk,

 rst => rst,

 din => data(i),

 dout => data(i+1));

 end generate regdesp;

Sentencia generate

32

Filtro FIR

Como conjunto de etapas

Sentencia generate

33

channel_filter: for i in 0 to 23 generate

 taps: tap generic map(

 INPUT_WIDTH => 9,

 OUTPUT_WIDTH => 10,

 TRUNC_BITS => 8,

 COEF => coefs(sel(i<12, i, 23-i)),

 SAT_MULT_BITS => 2)

 port map(

 clk => clk,

 rst => rst,

 valid => cfilterin_valid,

 input => cfilterin,

 prev => d_aux(i),

 output => d_aux(i+1)

);

 end generate; 34

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

35

Encapsular todo lo anterior

En un package VHDL podemos definir:

● Tipos de datos
● Constantes
● Funciones
● Procedimientos
● Componentes

Packages

36

Encapsular todo lo anterior

En lugar de redeclarar todo lo que
necesitemos en cada fichero .vhd de cada
entidad, simplemente añadimos a la sección
library:

use work.mypackage.all;

Packages

37

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package mypackage is
 -- declaración de tipos de datos
 -- declaración de constantes
 -- declaración de componentes
 -- declaración de funciones y procedimientos
end mypackage;

package body mypackage is
 -- definición de funciones y procedimientos

end mypackage; 38

Conjuntos de packages
Se incluyen por completitud, pero no os hará
falta crearlas para la asignatura

Por ejemplo, std_logic_1164 es un
package del library IEEE:
library IEEE;
use IEEE.STD_LOGIC_1164.all;

Vuestros packages custom pertenecen al
library work por defecto

Libraries

39

Conjuntos de packages
Para utilizar libraries de terceros,deben
compilarse/sintetizarse aparte, y en la
sección library:

library uvvm_util;
use uvvm_util.types_pkg.all;
use uvvm_util.string_methods_pkg.all;
use uvvm_util.adaptations_pkg.all;
use uvvm_util.methods_pkg.all;

use <library>.<package>.all;

Libraries

40

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

41

std_ulogic: no resuelto
std_logic: resuelto

TYPE std_ulogic IS ('U', -- Uninitialized

 'X', -- Forcing Unknown

 '0', -- Forcing 0

 '1', -- Forcing 1

 'Z', -- High Impedance

 'W', -- Weak Unknown

 'L', -- Weak 0

 'H', -- Weak 1

 '-' -- Don't care

);

SUBTYPE std_logic IS resolved std_ulogic;

std_ulogic vs std_logic

42

std_ulogic explicado
● ‘0’, ‘1’: Uso normal
● ‘Z’: Cuando necesitamos poner algo en alta impedancia (buses compartidos,

normalmente sólo se puede poner en los pines de la FPGA, que es el único sitio
donde suele haber puertas triestado)

● ‘U’: Nos avisa en simulación de que no hemos inicializado algo correctamente (ej:
resets mal implementados)

● ‘X’: Nos avisa en simulación de cortocircuitos, o de operaciones realizadas sobre
valores ‘U’

● ‘L’, ‘H’: Modelado de pulldowns/pullups en simulación
● ‘W’: Nos avisa en simulación de cortocircuitos entre ‘L’ y ‘H’
● ‘-’: Puede usarse como ‘comodín’ al comparar vectores

 (if vect = “11-0-1--” then)

std_ulogic vs std_logic

43

Función de resolución

-- resolution function

CONSTANT resolution_table : stdlogic_table := (

-- ---

-- | U X 0 1 Z W L H - | |

-- ---

 ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- | U |

 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | X |

 ('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), -- | 0 |

 ('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), -- | 1 |

 ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), -- | Z |

 ('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), -- | W |

 ('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- | L |

 ('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- | H |

 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') -- | - |

);

std_ulogic vs std_logic

44

● Nos sirve de chequeo
en tiempo de síntesis /
compilación

¿Qué significa esto?

● No siempre queremos
esto! (de hecho, casi
nunca lo queremos)

● El sintetizador te avisa
de los multi-source

● Los simuladores no!
(aparecen ‘X’ en los
waveform)

std_ulogic vs std_logic

45

¿Cuándo queremos std_logic?

Síntesis:
● Puertos

bidireccionales

std_ulogic vs std_logic

46

Simulación:
● Modelado de

pull-ups, pull-down,
resistencias (fuera
de nuestro diseño
digital)

● Buses compartidos

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

47

● VHDL’87
○ Primera versión

● VHDL’93
○ Versión con mayor soporte por las herramientas de síntesis

y simulación propietarias. Introduce variables compartidas
● VHDL 2002

○ Añade tipos protegidos para variables compartidas. Se
añade VHPI (VHDL Procedural Interface) en 2007

● VHDL 2008 (más información aquí)
○ Integración de PSL (Property Specification Language).

Generics en tipos, paquetes y subprogramas. Soportado en
síntesis por Synopsys, y en simulación por QuestaSim y
GHDL. Múltiples mejoras de usabilidad (process(all);)

● VHDL 2019
○ Versión más reciente (demos tiempo a las herramientas…)

Versiones del estándar

48

https://www.doulos.com/knowhow/vhdl_designers_guide/vhdl_2008/

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

49

Conclusiones y
recomendaciones

● VHDL da opciones para estructurar el código
de manera que sea más mantenible

● No es obligatorio usarlo todo
● Aunque esté encapsulado, sigue siendo HW!
● Se recuerda que las herramientas de los

fabricantes normalmente generan plantillas
para todo lo mencionado anteriormente

Para finalizar

50

Contenido
● Motivación
● Records
● Functions y Procedures
● Sentencias For y Generate
● Packages y Libraries
● std_ulogic vs std_logic
● Versiones del estándar
● Conclusiones
● Bibliografía

VHDL avanzado

51

Bibliografía

● Brian Mealy, Fabrizio Tappero, Free
Range VHDL. Free Range Factory, 2018

● The VHDL Golden Reference Guide.
Doulos, 1995

● Ricardo Jasinski, Effective Coding with
VHDL: principles and best practice. The
MIT Press, 2016

52

http://freerangefactory.org/pdf/df344hdh4h8kjfh3500ft2/free_range_vhdl.pdf
http://freerangefactory.org/pdf/df344hdh4h8kjfh3500ft2/free_range_vhdl.pdf

Resultados de aprendizaje
● Saber utilizar el tipo record para

reestructurar los datos procesados por un
diseño

● Diferencias entre function y procedure
● Uso de for y generate para generar

instancias de hardware
● Saber que se puede mover código común a

un package para evitar duplicidad de código
● ¿Cuándo se debe utilizar std_ulogic y

cuándo std_logic?
53

