Advanced VHDL

Hipolito Guzman Miranda
Departamento de Ingenieria Electronica
Universidad de Sevilla
hguzman@us.es

mailto:hipolito@gie.esi.us.es

Teaching context

B02: Advanced Programmable Logic Systems
e Tema 3: Advanced VHDL

Required prior knowledge:

e Basic VHDL
o Design with two processes

Learning objectives

Expand the vocabulary of sentences and
keywords in VHDL

Become familiar with VHDL's potential to
raise the level of abstraction in design,
without losing sight of the behavior in
synthesis

Acquire skills to reduce code duplication
and increase code reusability

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

Motivation

The VHDL you know (synthesis)

comb: process (<sensitivity list>)
if ... elsif ... else ... end if:
case ... when => ... end case,;

sinc: process (rst, clk)
if (rst="1") then ...
elsif (rising_edge(clk) then ...
end if;

Instances of components and entities

Motivation

The VHDL you know (simulation)

clk_process: process
e invert clk, wait for clk_period/2

stim_process: process

e Manually-generated stimuli sequence
(very tedious to write for complex tests)

Motivation

‘Cargo cult programming’

In C, sloppy code usually produces poor
results and is harder to debug and modify.

In VHDL, sloppy code can produce working
hardware, but it will also be difficult to debug
and modify -> code that nobody wants to

touch.

Motivation

VHDL is a HIGH level language

e Describe at a higher abstraction level

e [et the synthesizer infer the circuit

e Synthesized hardware works just as well
(or better), but the code is easier to read
and maintain

But let's take it one step at a time...

Motivation

A few words of warning

Everything explained here requires hardware
resources (in implementation)

Operations are not performed sequentially
but concurrently

The design paradigm remains the same:
operations become logic -> but you'll have
more resources to structure your code

10

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

11

The record datatype

“Bad programmers worry about the code. Good
programmers worry about data structures and their
relationships.” - Linus Torvalds

e This also applies when describing hardware

e record(s) are a type that is composed of other
data

e They are the VHDL equivalent to C’s struct

e Group signals or ports of the same context into
record(s)

12

Example: signals

type transceiver data 1is
record
data : std logic vector (15 downto ©0);
valid : std logic;
end record;

signal datain, dataout : transceiver data;

13

Port (
clk
rst
data_in
data out I

)5

end transceiver;

Example: ports

entity transceiver 1is

: in std logic;
: in std logic;

in transceiver data;

. out transceiver data;
data out Q :

out transceiver data

14

Ejemplo: puertos

entity transceiver 1is

e The full record has a single direction (IN o
OuT)

e Adding a new signal to the port only requires
changing the record definition!

data out Q : out transceiver data

)5

end transceiver;

15

Asignhacion y uso
Acceder a record.dato :

if (data_in.valid = '1') then
data out.data <= data_in.data;
data _out.valid <= "1°';

end if;

16

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

17

Functions

Read signals, return value

function invert (data: std logic) return std logic is
begin
return not data;
end function invert;

On synthesis, each call to the function will
generate an inverter!

18

Functions

Ejemplos

function sum (a: integer; b: integer)
return integer is
begin
return a+b;
end function sum;

On synthesis, each call to the function will
generate an adder

19

Functions

Ejemplos

function sel (cond: boolean; if true,
if false: integer) return integer is
begin
if cond = true then
return (if _true);
else
return (if false);
end if;
end function sel;

20

Functions

Why use them?

Since they produce the same hardware, it's
worthwhile to use them for:

e Encapsulating operations for reuse
e Multiplexing or inverting generics, constants,
or signals in a generic map or port map

| must insist: they are not subroutines, they are
hardware! N

Procedures

Multiple inputs, multiple outputs

Apparently similar to functions but:
e Have IN and OUT parameters

e Can read from the IN parameters and
modify the OUT parameters

22

Procedures

procedure vect_write
(constant data: in std logic vector(31 downto 0);
signal vector ctrl : out fifo_ctrl) is
begin
vector_ctrl.datai <= data;
vector _ctrl.wr_en <= '1";
wait for 10 ns;
vector_ctrl.wr_en <= '0'; --after 10 ns;
end procedure;

(Not synthesizable since it contains a wait statement)
23

Functions and Procedures

Differences:

e Functions do not modify anything, they
simply return a value

data <= a_function (other_data);

e Procedures change the values of signals

my procedure (signhals _in, signals out);

24

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

25

for 1 in 0 to 7 loop

e The synthesizer expands the loop during
synthesis

e The range of the loop must be static (so that
it can be synthesized)

e Each pass through the loop is not an
‘iteration’, but a repetition of the hardware

26

Example

reorder_data: process (data _in)
begin
for 1 in © to 7 loop
data out(i) <= data_in(7-1i);
end loop;
end process;

27

Is equivalent to:

reorder_data: process (data_in)
begin

data_out(@) <= data _in(7);
data_out(1) <= data_in(6);
data_out(2) <= data_in(5);
data_out(3) <= data_in(4);
data_out(4) <= data_in(3);
data_out(5) <= data_in(2);
data_out(6) <= data_in(1);
data_out(7) <= data_in(09);

end process;

28

Generate sentence

Conditional instantiation of
components

e Instances a component/entity or not,
depending on whether a condition is met

e [his condition must be static so that it is
known at synthesis time

e The synthesizer instances (or not) the
component

29

Generate sentence

if condition generate

second _instance: if GENERATE_TWO=true
generate
inst2: cont port map (
clk => clk,
rst => rst,
count => count2);
end generate second instance;

30

Generate sentence

Multiple component instantiation

e Using for parameter in range

e The same as before, the synthesizer
expands the loop during synthesis

e The loop range must be static (so that it
can be synthesized)

e Each pass of the loop is not an ‘iteration’,
IS an instance of the hardware
(component/entity)

31

Generate sentence

for parameter in range
generate

regdesp:
for i in 0 to 3 generate
myreg : reg port map (
clk => clk,
rst => rst,
din => data(i),
dout => data(i+l));
end generate regdesp;

32

Generate sentence

FIR filter

As a set of taps (stages)

4 Yo Y Yo Y Yo Y N
X(n)
bo b1 bg b3 b4 bs be b7
Y(n)
» 71 > Z1 > Z1 > Z1 NP Z1 o> Z1 > Z1 >
- AN AN AN AN AN AN /

33

channel filter: for i in © to 23 generate
taps: tap generic map(
INPUT_WIDTH => 9,
OUTPUT_WIDTH => 10,

TRUNC_BITS => 8,
COEF => coefs(sel(i<12, i, 23-i)),
SAT _MULT_BITS => 2)
port map(
clk => clk,

rst => rst,
valid => cfilterin _valid,
input => cfilterin,
prev => d_aux(1i),
output => d_aux(i+l)
)

end generate;

34

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

35

Packages

Encapsulate all we have
previously seen

In a VHDL package we can define:

Data types
Constants

Functions
Procedures
Components

36

Packages

Encapsulate all we have
previously seen

Instead of redeclaring everything we need in
each .vhd file of each entity, we simply add
the following to the 1library section:

use work.mypackage.all;

37

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package mypackage is

-- declaration of data types

-- declaration of constants

-- declaration of components

-- declaration of functions and procedures
end mypackage;

package body mypackage is
-- definition of functions and procedures

end mypackage;

38

Libraries

Sets of packages

Included here for completeness, but you
won't need to create them for this subject

For example, std logic 1164 is a package
of the IEEE library:

library IEEE;
use IEEE.STD_LOGIC_1164.all;

You packages will belong to library work by
default

39

Libraries

Sets of packages

To use third-party libraries, they must be
compiled/synthesized separately, and in the
library section:

library uvvm_util;

use uvvm_util.types_ pkg.all;

use uvvm_util.string_methods_pkg.all;
use uvvm_util.adaptations_pkg.all;
use uvvm_util.methods_pkg.all;

use <library>.<package>.all;
40

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std_logic
Standard versions
Conclusions

Bibliography

41

std_ulogic vs std_logic

std_ulogic: unresolved
std_logic: resolved

TYPE std ulogic IS ('U', -- Uninitialized

'X', —-- Forcing Unknown
'0', —-- Forcing O

'l', -- Forcing 1

'2', —-- High Impedance
W', —-— Weak Unknown
'L', -—-- Weak 0

'H', —-— Weak 1

I -— Don't care

SUBTYPE std logic IS resolved std ulogic;
42

std_ulogic vs std_logic

std ulogic explained

‘0’, “1°: Normal use

e ‘Z’:When we need to put something at high impedance (such as shared buses; it
can usually only be put on the FPGA pins, which is the only place where tri-state
gates are usually found)

e ‘U’: It warns us in simulation that we haven't initialized something correctly (e.g.,
poorly implemented resets)

e ‘X’:Itwarns us in simulation about short circuits, or about some operations
performed over ‘U’ values

e ‘L’, ‘H’: Modeling of pulldowns/pullups in simulation

e ‘W’: Warns us in simulation about short circuits between ‘L’ and ‘H’

e ‘-’:Can be used as a wildcard when comparing vectors

(if vect = “11-0-1--” then)

Fuerte Débil Especiales

. . o - Cero logico débil - Alta impedancia
Bale £ Gors logicoritions E (Low = pulldown) Z (High impedance)
o Focn e Uno logico débil - Sin inicializar
Alto 1 Uno légico fuerte H (High = pullup) U (Uninitialized)
DESESTEEHG X Valor fuerte desconocido W Valor débil desconocido No importa
(Unknown) (Weak) (Don't care) 43

'U', 'X', 'X'['X', 'X'[le, 'X', 'X', |X|
'U', 'X', 'O'['X', 'O', lOl, 'O', 'O', |X|
'U', 'X', 'X'['l', 'l', lll, '1', '1', |X|

'U', 'X', 'O', 'l', 'W', lwl, 'W', 'W', IXI
'U', 'X', 'O', 'l', lLl, lwl, 'L', 'W', IXI
'U', 'X', 'O', 'l', lHl, lwl, 'W', 'H', IXI

™ 2 =S N R O X C

() |
() |
() |
() |
(', 'x*, o', "'12v, 'z', 'w', 'n', 'H', 'X'"), -—— |
() |
() |
() |
() |

lUl lxl lx| lxl lxl lxl lxl lxl |X|
4 4 4 4 4 4 4 4
) ; 44

std_ulogic vs std_logic

What does this mean?

value a j_) value a
c: std_logic ﬁ—» c: std_ulogic
value b value b -2

OK! ¢ takes the value resolve(a,b) ERROR!
e \We don't always want e \ery useful as a check
this! (In fact, we during synthesis /
almost never do!) compilation time

e Synthesizers warn you
about multi-sources

e Simulators don't! (you
get 'X's in the
waveforms)

45

std_ulogic vs std_logic

When do we want std_logic?

value a
j—» c: std_logic
value b

OK! c takes the value resolve(a,b)

Synthesis: Simulation:

e Bidirectional ports e Modeling of pull-ups,
(sometimes) pull-down, resistors
(outside of our digital
design)
e Shared buses

46

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

47

Standard versions

VHDL'87

o First version

e VHDL93

o Version with greater support from proprietary synthesis and
simulation tools. Introduces shared variables

e VHDL 2002

o Adds protected types for shared variables. VHPI (VHDL
Procedural Interface) was added in 2007

e \VHDL 2008 (more information here)

o Integration of PSL (Property Specification Language). Generics
in types, packages and subprograms. Supported in synthesis
by Synopsys, and in simulacion by QuestaSim and GHDL.
Multiple usability improvements (process (all) ;)

e VHDL 2019

o Latest version (let's give the tools time...)
48

https://www.doulos.com/knowhow/vhdl_designers_guide/vhdl_2008/

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

49

In conclusion

Conclusions and
recomendations

VHDL offers options for structuring code to
make it more maintainable

Using all of these options is not mandatory

Even though it's encapsulated, it's still
hardware!

Remember that vendor tools typically
generate templates for everything mentioned
above

50

Advanced VHDL

Contents

Motivation

Records

-unctions and Procedures
~or and Generate sentences
Packages and Libraries
std_ulogic vs std _logic
Standard versions
Conclusions

Bibliography

51

Bibliography

e Brian Mealy, Fabrizio Tappero, Free
Range VHDL. Free Range Factory, 2018

e The VHDL Golden Reference Guide.
Doulos, 1995

e Ricardo Jasinski, Effective Coding with
VHDL: principles and best practice. The
MIT Press, 2016

52

http://freerangefactory.org/pdf/df344hdh4h8kjfh3500ft2/free_range_vhdl.pdf
http://freerangefactory.org/pdf/df344hdh4h8kjfh3500ft2/free_range_vhdl.pdf

Learning outcomes

Understanding how to use the record type to
restructure data processed by a design
Understanding the differences between
functions and procedures

Using for loops and generate to create
hardware instances

Understanding that common code can be
moved to a package to avoid code duplication
When to use std _ulogic and when to use
std logic?

53

