
Advanced VHDL

Hipólito Guzmán Miranda
Departamento de Ingeniería Electrónica

Universidad de Sevilla
hguzman@us.es

1

mailto:hipolito@gie.esi.us.es

Teaching context

2

B02: Advanced Programmable Logic Systems
● Tema 1: FPGA architecture
● Tema 2: Advanced digital design methodologies
● Tema 3: Advanced VHDL
● Tema 4: Verification capabilities for digital circuits

Required prior knowledge:
● Basic VHDL

○ Design with two processes

Learning objectives

3

● Expand the vocabulary of sentences and
keywords in VHDL

● Become familiar with VHDL's potential to
raise the level of abstraction in design,
without losing sight of the behavior in
synthesis

● Acquire skills to reduce code duplication
and increase code reusability

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

4

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

5

The VHDL you know (synthesis)
comb: process (<sensitivity_list>)
 if … elsif ... else … end if;
 case … when => ... end case;

sinc: process (rst, clk)
 if (rst = '1') then ...
 elsif (rising_edge(clk) then ...
 end if;

Instances of components and entities

Motivation

6

The VHDL you know (simulation)

clk_process: process
● invert clk, wait for clk_period/2

stim_process: process
● Manually-generated stimuli sequence

(very tedious to write for complex tests)

Motivation

7

‘Cargo cult programming’

In C, sloppy code usually produces poor
results and is harder to debug and modify.

In VHDL, sloppy code can produce working
hardware, but it will also be difficult to debug
and modify -> code that nobody wants to
touch.

Motivation

8

VHDL is a HIGH level language

● Describe at a higher abstraction level
● Let the synthesizer infer the circuit
● Synthesized hardware works just as well

(or better), but the code is easier to read
and maintain

But let's take it one step at a time...

Motivation

9

A few words of warning
Everything explained here requires hardware
resources (in implementation)

Operations are not performed sequentially
but concurrently

The design paradigm remains the same:
operations become logic -> but you'll have
more resources to structure your code

Motivation

10

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

11

The record datatype
“Bad programmers worry about the code. Good
programmers worry about data structures and their
relationships.” - Linus Torvalds

● This also applies when describing hardware
● record(s) are a type that is composed of other

data
● They are the VHDL equivalent to C’s struct
● Group signals or ports of the same context into

record(s)

Records

12

Example: signals
type transceiver_data is

 record

 data : std_logic_vector (15 downto 0);

 valid : std_logic;

 end record;

signal datain, dataout : transceiver_data;

Records

13

Example: ports
entity transceiver is

Port (

 clk : in std_logic;

 rst : in std_logic;

 data_in : in transceiver_data;

 data_out_I : out transceiver_data;

 data_out_Q : out transceiver_data

);

end transceiver;

Records

14

Ejemplo: puertos
entity transceiver is

Port (

 clk : in std_logic;

 rst : in std_logic;

 data_in : in transceiver_data;

 data_out_I : out transceiver_data;

 data_out_Q : out transceiver_data

);

end transceiver;

Records

● The full record has a single direction (IN o
OUT)

● Adding a new signal to the port only requires
changing the record definition!

15

Asignación y uso
Acceder a record.dato :

if (data_in.valid = '1') then

 data_out.data <= data_in.data;

 data_out.valid <= '1';

end if;

Records

16

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

17

Read signals, return value

function invert (data: std_logic) return std_logic is

 begin

 return not data;

 end function invert;

On synthesis, each call to the function will
generate an inverter!

Functions

18

Ejemplos
function sum (a: integer; b: integer)

return integer is

 begin

 return a+b;

 end function sum;

On synthesis, each call to the function will
generate an adder

Functions

19

Ejemplos
function sel (cond: boolean; if_true,

if_false: integer) return integer is

 begin

 if cond = true then

 return (if_true);

 else

 return (if_false);

 end if;

 end function sel;

Functions

20

Why use them?

Since they produce the same hardware, it's
worthwhile to use them for:

● Encapsulating operations for reuse
● Multiplexing or inverting generics, constants,

or signals in a generic map or port map

I must insist: they are not subroutines, they are
hardware!

Functions

21

Multiple inputs, multiple outputs
Apparently similar to functions but:

● Have IN and OUT parameters

● Can read from the IN parameters and
modify the OUT parameters

Procedures

22

Ejemplo:
procedure vect_write

(constant data: in std_logic_vector(31 downto 0);

signal vector_ctrl : out fifo_ctrl) is

 begin

 vector_ctrl.datai <= data;

 vector_ctrl.wr_en <= '1';

 wait for 10 ns;

 vector_ctrl.wr_en <= '0'; --after 10 ns;

 end procedure;

(Not synthesizable since it contains a wait statement)

Procedures

23

Differences:

● Functions do not modify anything, they
simply return a value
data <= a_function (other_data);

● Procedures change the values of signals
my_procedure (signals_in, signals_out);

Functions and Procedures

24

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

25

For loop

for i in 0 to 7 loop

● The synthesizer expands the loop during
synthesis

● The range of the loop must be static (so that
it can be synthesized)

● Each pass through the loop is not an
‘iteration’, but a repetition of the hardware

For loop

26

Example

reorder_data: process (data_in)

begin

 for i in 0 to 7 loop

 data_out(i) <= data_in(7-i);

 end loop;

end process;

For loop

27

Is equivalent to:
reorder_data: process (data_in)

begin

 data_out(0) <= data_in(7);

 data_out(1) <= data_in(6);

 data_out(2) <= data_in(5);

 data_out(3) <= data_in(4);

 data_out(4) <= data_in(3);

 data_out(5) <= data_in(2);

 data_out(6) <= data_in(1);

 data_out(7) <= data_in(0);

end process;

For loop

28

Conditional instantiation of
components

● Instances a component/entity or not,
depending on whether a condition is met

● This condition must be static so that it is
known at synthesis time

● The synthesizer instances (or not) the
component

Generate sentence

29

if condition generate

second_instance: if GENERATE_TWO=true

generate

 inst2: cont port map (

 clk => clk,

 rst => rst,

 count => count2);

end generate second_instance;

Generate sentence

30

Multiple component instantiation
● Using for parameter in range
● The same as before, the synthesizer

expands the loop during synthesis
● The loop range must be static (so that it

can be synthesized)
● Each pass of the loop is not an ‘iteration’,

is an instance of the hardware
(component/entity)

Generate sentence

31

for parameter in range
generate

regdesp:

 for i in 0 to 3 generate

 myreg : reg port map (

 clk => clk,

 rst => rst,

 din => data(i),

 dout => data(i+1));

 end generate regdesp;

Generate sentence

32

FIR filter

As a set of taps (stages)

Generate sentence

33

channel_filter: for i in 0 to 23 generate

 taps: tap generic map(

 INPUT_WIDTH => 9,

 OUTPUT_WIDTH => 10,

 TRUNC_BITS => 8,

 COEF => coefs(sel(i<12, i, 23-i)),

 SAT_MULT_BITS => 2)

 port map(

 clk => clk,

 rst => rst,

 valid => cfilterin_valid,

 input => cfilterin,

 prev => d_aux(i),

 output => d_aux(i+1)

);

 end generate; 34

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

35

Encapsulate all we have
previously seen

In a VHDL package we can define:

● Data types
● Constants
● Functions
● Procedures
● Components

Packages

36

Encapsulate all we have
previously seen

Instead of redeclaring everything we need in
each .vhd file of each entity, we simply add
the following to the library section:

use work.mypackage.all;

Packages

37

library IEEE;
use IEEE.STD_LOGIC_1164.all;

package mypackage is
 -- declaration of data types
 -- declaration of constants
 -- declaration of components
 -- declaration of functions and procedures
end mypackage;

package body mypackage is
 -- definition of functions and procedures

end mypackage; 38

Sets of packages
Included here for completeness, but you
won’t need to create them for this subject

For example, std_logic_1164 is a package
of the IEEE library:
library IEEE;
use IEEE.STD_LOGIC_1164.all;

You packages will belong to library work by
default

Libraries

39

Sets of packages
To use third-party libraries, they must be
compiled/synthesized separately, and in the
library section:

library uvvm_util;
use uvvm_util.types_pkg.all;
use uvvm_util.string_methods_pkg.all;
use uvvm_util.adaptations_pkg.all;
use uvvm_util.methods_pkg.all;

use <library>.<package>.all;

Libraries

40

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

41

std_ulogic: unresolved
std_logic: resolved

TYPE std_ulogic IS ('U', -- Uninitialized

 'X', -- Forcing Unknown

 '0', -- Forcing 0

 '1', -- Forcing 1

 'Z', -- High Impedance

 'W', -- Weak Unknown

 'L', -- Weak 0

 'H', -- Weak 1

 '-' -- Don't care

);

SUBTYPE std_logic IS resolved std_ulogic;

std_ulogic vs std_logic

42

std_ulogic explained
● ‘0’, ‘1’: Normal use
● ‘Z’: When we need to put something at high impedance (such as shared buses; it

can usually only be put on the FPGA pins, which is the only place where tri-state
gates are usually found)

● ‘U’: It warns us in simulation that we haven't initialized something correctly (e.g.,
poorly implemented resets)

● ‘X’: It warns us in simulation about short circuits, or about some operations
performed over ‘U’ values

● ‘L’, ‘H’: Modeling of pulldowns/pullups in simulation
● ‘W’: Warns us in simulation about short circuits between ‘L’ and ‘H’
● ‘-’: Can be used as a wildcard when comparing vectors

 (if vect = “11-0-1--” then)

std_ulogic vs std_logic

43

Resolution function

-- resolution function

CONSTANT resolution_table : stdlogic_table := (

-- ---

-- | U X 0 1 Z W L H - | |

-- ---

 ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), -- | U |

 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), -- | X |

 ('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), -- | 0 |

 ('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), -- | 1 |

 ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), -- | Z |

 ('U', 'X', '0', '1', 'W', 'W', 'W', 'W', 'X'), -- | W |

 ('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), -- | L |

 ('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), -- | H |

 ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') -- | - |

);

std_ulogic vs std_logic

44

● Very useful as a check
during synthesis /
compilation time

What does this mean?

● We don't always want
this! (In fact, we
almost never do!)

● Synthesizers warn you
about multi-sources

● Simulators don't! (you
get 'X's in the
waveforms)

std_ulogic vs std_logic

45

When do we want std_logic?

Synthesis:
● Bidirectional ports

(sometimes)

std_ulogic vs std_logic

46

Simulation:
● Modeling of pull-ups,

pull-down, resistors
(outside of our digital
design)

● Shared buses

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

47

● VHDL’87
○ First version

● VHDL’93
○ Version with greater support from proprietary synthesis and

simulation tools. Introduces shared variables
● VHDL 2002

○ Adds protected types for shared variables. VHPI (VHDL
Procedural Interface) was added in 2007

● VHDL 2008 (more information here)
○ Integration of PSL (Property Specification Language). Generics

in types, packages and subprograms. Supported in synthesis
by Synopsys, and in simulación by QuestaSim and GHDL.
Multiple usability improvements (process(all);)

● VHDL 2019
○ Latest version (let's give the tools time...)

Standard versions

48

https://www.doulos.com/knowhow/vhdl_designers_guide/vhdl_2008/

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

49

Conclusions and
recomendations

● VHDL offers options for structuring code to
make it more maintainable

● Using all of these options is not mandatory
● Even though it's encapsulated, it's still

hardware!
● Remember that vendor tools typically

generate templates for everything mentioned
above

In conclusion

50

Contents
● Motivation
● Records
● Functions and Procedures
● For and Generate sentences
● Packages and Libraries
● std_ulogic vs std_logic
● Standard versions
● Conclusions
● Bibliography

Advanced VHDL

51

Bibliography

● Brian Mealy, Fabrizio Tappero, Free
Range VHDL. Free Range Factory, 2018

● The VHDL Golden Reference Guide.
Doulos, 1995

● Ricardo Jasinski, Effective Coding with
VHDL: principles and best practice. The
MIT Press, 2016

52

http://freerangefactory.org/pdf/df344hdh4h8kjfh3500ft2/free_range_vhdl.pdf
http://freerangefactory.org/pdf/df344hdh4h8kjfh3500ft2/free_range_vhdl.pdf

Learning outcomes
● Understanding how to use the record type to

restructure data processed by a design
● Understanding the differences between

functions and procedures
● Using for loops and generate to create

hardware instances
● Understanding that common code can be

moved to a package to avoid code duplication
● When to use std_ulogic and when to use

std_logic?
53

