
Metodologías de diseño 
digital avanzado

Hipólito Guzmán Miranda
Profesor Titular

Universidad de Sevilla
1



Contexto docente

2

B02: Sistemas Lógicos Programables Avanzados
● Tema 1: Arquitectura FPGAs
● Tema 2: Metodologías de diseño digital avanzado
● Tema 3: VHDL avanzado
● Tema 4: Capacidades de verificación en circuitos 

digitales

Conocimientos previos requeridos:
● Arquitectura de FPGAs



Contexto

● 60+ años de Ley de Moore (1965)
● El ‘Design Gap’
● El ‘Verification Gap’

Introducción

3



Pero antes de todo esto...

¿Sabéis cómo es una FPGA por dentro?

Arquitectura FPGAs

4



Sistemas digitales complejos

Escalado de complejidad:
● Design gap
● Verification gap

Introducción

5



El ‘Design Gap’

El ‘Design Gap’

6



El ‘Design Gap’

● La capacidad de diseño crece más lento 
que la capacidad de fabricación

● Si un diseñador diseña a 100 puertas por 
día, y en un chip caben 10M puertas… 
tardamos 100K días en diseñar el sistema 
completo : 500 ingenieros * 1 año!

El ‘Design Gap’

7



El ‘Verification Gap’

El ‘Verification Gap’

8



El ‘Verification Gap’

El ‘Verification Gap’

9



El ‘Verification Gap’

El ‘Design Gap’

10



Desarrollo de
sistemas digitales complejos

● Especificaciones
○ Describir de forma clara y no ambigua qué debe 

hacer el sistema

● Diseño
○ Implementar el sistema

● Verificación
○ Comprobar que el diseño cumple con las 

especificaciones

Introducción

11



Retos en especificación

● Especificar de manera no ambigua
● “Moving targets”: cambios que pide el 

cliente durante la duración del proyecto
● Incremento de la complejidad de los 

sistemas -> incremento exponencial de 
las interacciones entre elementos y 
modos de fallo

● Mantener el documento de requisitos vivo 
durante la duración del proyecto

Introducción

12



Retos en diseño

● Altos requerimientos en prestaciones
○ Alto throughput
○ Alto ancho de banda
○ Alta frecuencia de operación

● Conocimientos técnicos de los equipos
● Protocolos y primitivas específicas
● Diseños mixtos Hardware/Software

Introducción

13



Retos en verificación
● Verificación funcional: ¿es la funcionalidad 

correcta:
○ ¿En todos los casos de uso posibles?
○ ¿Para todas las configuraciones posibles?

● Coverage: ¿hemos probado todo nuestro 
diseño?
○ ¿Todo el código?
○ ¿Toda la funcionalidad?

● ¿Podemos hacer esto en proyectos de 
complejidad exponencialmente creciente? 

Introducción

14



El ‘Design Gap’: soluciones

● Uso de procesadores empotrados (soft 
processors / hard macros)

● Uso de IP cores
● Síntesis de alto nivel

Ojo! Diseños más complejos requieren 
mayor esfuerzo en verificación!

El ‘Design Gap’

15



El ‘Verification Gap’: soluciones

● Métricas de verificación (¿cuándo sé que 
he terminado de verificar?)

● Metodologías de verificación (UVM, 
OSVVM, UVVM, pyUVM)

● Uso de Verification IP
● Uso de aceleradores

hardware

El ‘Verification Gap’

16



Metodologías de diseño

● FPGAs como System-on-Chip: Soft 
processors y hard macros

● Diseño con IP cores
● Higher Level Synthesis

Metodologías de diseño avanzado

17



Metodologías de diseño

● FPGAs como System-on-Chip: Soft 
processors y hard macros

● Diseño con IP cores
● Higher Level Synthesis

Metodologías de diseño avanzado

18



FPGAs como System-on-Chip

● Evolución de las tecnologías 
microelectrónicas (Ley de Moore)

● Nos lleva a la siguiente arquitectura de 
una FPGA moderna:

FPGAs como System-on-Chip

19



Arquitectura de una
FPGA moderna

● Además de IOBs, CLBs y recursos de 
rutado:

● Memorias empotradas (Block RAMs)
● Bloques DSP (Digital Signal Processing)
● Comunicaciones de alta velocidad 

(Gigabit transceivers, PCIexpress, …)
● Microprocesadores!

FPGAs como System-on-Chip

20



Familia Zynq

ARM 
Dual-core
Integrado en
el silicio

21



Soft processors
● No necesitamos una FPGA de última 

generación para tener un microprocesador
● Si tuviéramos una descripción en 

VHDL/Verilog de una ALU, registros, 
contador de programa, decodificador de 
instrucciones… = un microprocesador

● Aunque no esté implementado en silicio 
(como una BRAM), podríamos dedicar una 
parte de la FPGA a implementar un 
microprocesador

Soft Processors

22



Soft processors

Soft Processors

23



No necesitamos
crearlo desde cero

Algunos soft processors:
● Microblaze (Xilinx)
● Nios II (Altera)
● Leon 4 (Aeroflex Gaisler)
● Plasma (Opencores)
● OpenSparc
● OpenRisc
● ...

Soft Processors

24



Algunos problemas:
● Configurar los periféricos y mapa de 

memoria
● Disponer de un toolchain completo 

(compilador, linker, etc)
● Sistema operativo o programa ‘standalone’
● Configurar las BRAM con el ejecutable
● Desarrollo de periféricos ‘custom’
● Disponer de un modelo de simulación
● Conseguir que arranque el micro!

Soft Processors

25



Algunas ventajas:
● Diseño óptimo: HW y SW se encargan 

cada uno de lo que les es más eficiente
● Simplicidad en las comunicaciones de tu 

diseño HDL con el exterior: USB, TCP/IP, 
…

● Una actualización no es sólo cambiar el 
programa: podemos añadir periféricos 
nuevos (por ejemplo un timer)

Soft Processors

26



Consejos
● HW para tareas paralelas
● SW para tareas secuenciales
● Utilizar HW para funcionalidad crítica: si 

se cuelga el SW, el HW seguirá 
funcionando

● Utilizar SW para comunicaciones 
(TCP/IP): conexión de tu VHDL al exterior

Soft Processors

27



Metodologías de diseño

Además de dominar VHDL avanzado:

● FPGAs como System-on-Chip: Soft 
processors y hard macros

● Diseño con IP cores
● Higher Level Synthesis

Metodologías de diseño avanzado

28



Diseño con IP cores
● Esfuerzo elevado de desarrollar un 

sistema complejo
● Reutilizar módulos que ya estén probados
● Reducción del esfuerzo de diseño
● Principal problema es la integración de 

los módulos:
○ Interfaces
○ Calidad de la documentación
○ Configuración de los IP cores

Diseño con IP cores

29



IP (Intellectual Property)
Cores deben ser:

● Reusables
● Configurables
● Simulables con los simuladores 

estándares de la industria
● Con interfaces basadas en estándares
● Verificados con un alto nivel de confianza
● Completamente documentados

Diseño con IP cores

30



Buses para
microprocesadores empotrados

IP cores específicos tienen interfaces 
específicos. Un softcore específico soportará 
uno o varios buses:
● PLB, AXI4 (MicroBlaze)
● Wishbone (‘estándar’ en Opencores y 

diseños Free/Open-Source)
● AMBA (Leon)

Diseño SoC + IP

31



Buses para
microprocesadores empotrados

Los IP cores de terceros que integremos y los que 
desarrollaremos nosotros deberían tener
un interfaz con el bus elegido

Aunque si no necesitamos velocidad podremos 
utilizar una conexión por GPIO

De esta forma: diseño de System-On-Chip complejos 
utilizando IP cores basados en estándares

Diseño SoC + IP

32



Consejos
● Un buen integrador acelera el diseño 

tanto o más que un buen diseñador
● Hay que entender los ‘quirks’ de los 

fabricantes/proveedores
● Es extremadamente recomendable 

simular casos básicos para hacerse a los 
bloques

● Leer mucho y probar poco a poco!!

Diseño con IP cores

33



Metodologías de diseño

● FPGAs como System-on-Chip: Soft 
processors y hard macros

● Diseño con IP cores
● Higher Level Synthesis

Metodologías de diseño avanzado

34



Higher Level Synthesis

● VHDL ya es ‘alto nivel’, no obstante en la 
actualidad existen herramientas (en 
distintos estados de madurez) que 
traducen de código de más alto nivel (C, 
SystemC, python, etc) a hardware

Higher Level Synthesis

35



Higher Level Synthesis

36Source: Xilinx



Funciones: representan la jerarquía 
del diseño
Entradas top-level: los argumentos 
de la función top-level determinan 
los puertos del hardware generado
Tipos: los tipos de los datos tienen 
influencia en el área y prestaciones
Arrays: pueden influir en la E/S del 
dispositivo y convertirse en cuellos 
de botella
Operadores: Los operadores en el 
código C se implementan en 
hardware y pueden ser compartidos 
por diferentes partes de la 
implementación

Higher Level Synthesis

37



Higher Level Synthesis

38



Consejos

● Al igual que cuando usas un compilador, 
tienes mayor facilidad de diseño pero 
menor control sobre el resultado final

● El correcto uso de las directivas de 
síntesis es fundamental para garantizar 
una implementación eficiente

● 2x area, ½ velocidad con respecto a 
implementaciones VHDL

Higher Level Synthesis

39



Referencias
● Xilinx Large FPGA Methodology Guide 

(UG872)
● MicroBlaze Processor Reference Guide 

(UG081, v11.0 - EDK 12.1)
● EDK Concepts, Tools, and Techniques: A 

Hands-On Guide to Effective Embedded 
System Design (UG683 - EDK 12.1)

FPGAs para automatización

40

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/edk_ctt.pdf


Referencias (II)
● Xilinx Vivado Design Suite User Guide: High 

Level Synthesis
● Michael Keating, Pierre Bricaud, Reuse 

Methodology Manual for System-on-a-Chip 
Designs

FPGAs para automatización

41

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4

