Metodologias de diseno
digital avanzado

Hipolito Guzman Miranda
Profesor Titular
Universidad de Sevilla



Contexto docente

B02: Sistemas Logicos Programables Avanzados

e Tema 2: Metodologias de diseno digital avanzado

Conocimientos previos requeridos:
e Arquitectura de FPGAs



Introduccion

Contexto

e 60+ anos de Ley de Moore (1965)
e El 'Design Gap’
e El ‘Verification Gap’



Arquitectura FPGAs

Pero antes de todo esto...

;. Sabéis como es una FPGA por dentro?



Introduccion

Sistemas digitales complejos

Escalado de complejidad:
e Design gap
e \erification gap



Logic Transistor Number

|
I
| |
Design Complexity Increase |

8% I Year | .*

’
™ .—.

100

' ' 10
1990 1995 2000 2005 2010

Source : SEMATECH

Transistor Number Per Person Month



El ‘Design Gap’

El ‘Design Gap’

e |La capacidad de diseno crece mas lento
que la capacidad de fabricacion

e Siun disefador disefia a 100 puertas por
dia, y en un chip caben 10M puertas...
tardamos 100K dias en disenar el sistema
completo : 500 ingenieros * 1 afno!



gates

Fa
-~

Design Size in Millions of

g

1992

Design
Gap

Verification
Gap



Transistors/Month oY,
Transistors/Chip ©
\X~°°
Design Gap 2 @
co\‘l'
&
S
QQJ " C\‘\\i\\‘{
(O
Verfication Gap oeg\g“?

Time



EUTS
E

' FPGA Capacity, K

e

FPGACapacity

OQutstrips Verification &
Debug Capability

2002 2004 2007 2009 2011
130nm 90 nm 65nm 40nm 28 nm

10



Introduccion

Desarrollo de
sistemas digitales complejos

e Especificaciones
o Describir de forma clara y no ambigua qué debe
hacer el sistema

e Diseno
o |Implementar el sistema

e \erificacion
o Comprobar que el disefio cumple con las

especificaciones
11



Introduccion

Retos en especificacion

Especificar de manera no ambigua

“Moving targets”: cambios que pide el

cliente durante la duracion del proyecto
Incremento de la complejidad de los
sistemas -> incremento exponencial de

las interacciones entre elementos y

modos de fallo

Mantener el documento de requisitos vivo
durante la duracion del proyecto .



Introduccion

Retos en diseno

Altos requerimientos en prestaciones
o Alto throughput

o Alto ancho de banda

o Alta frecuencia de operacion

Conocimientos tecnicos de los equipos
Protocolos y primitivas especificas
Disenos mixtos Hardware/Software

13



Introduccion

Retos en verificacion

e \Verificacion funcional: ¢ es la funcionalidad

correcta:

o ¢ Entodos los casos de uso posibles?
o ¢ Para todas las configuraciones posibles?

e Coverage: ;hemos probado todo nuestro
diseno?
o ¢ Todo el codigo?
o ¢ Toda la funcionalidad?

e ; Podemos hacer esto en proyectos de
complejidad exponencialmente creciente?

14



El ‘Design Gap’

El ‘Design Gap’: soluciones

e Uso de procesadores empotrados (soft
processors / hard macros)

e Uso de IP cores

e Sintesis de alto nivel

Ojo! Disenos mas complejos requieren
mayor esfuerzo en verificacion!

15



El ‘Verification Gap’

El ‘Verification Gap’: soluciones

Metricas de verificacion (¢ cuando sé que
he terminado de verificar?)

Metodologias de verificacion (UVM,
OSVVM, UVVM, pyUVM) V\F;g

Uso de Verification IP
Jso de aceleradores
nardware

Virtex-5 LX330
(May-2007)



Metodologias de disefo avanzado

Metodologias de diseno

e FPGAs como System-on-Chip: Soft
processors y hard macros

e Diseno con IP cores

e Higher Level Synthesis

17



Metodologias de disefo avanzado

Metodologias de diseno

e FPGAs como System-on-Chip: Soft
processors y hard macros

e Diseno con IP cores

e Higher Level Synthesis

18



FPGAs como System-on-Chip

FPGAs como System-on-Chip

e Evolucidon de las tecnologias
microelectronicas (Ley de Moore)

e Nos lleva a la siguiente arquitectura de
una FPGA moderna:

19



FPGAs como System-on-Chip

Arquitectura de una
FPGA moderna

e Ademas de |IOBs, CLBs y recursos de
rutado:

e Memorias empotradas (Block RAMSs)

e Bloques DSP (Digital Signal Processing)

e Comunicaciones de alta velocidad
(Gigabit transceivers, PClexpress, ...)

e Microprocesadores!

20



Processing System

Flash Controller
NOR, NAND, SRAM, Quad SPI

32;," AMBA® Interconnect

12C

Muitiport DRAM Controfier
DDR3, DDR3L, DOR2

2x
CAN NEON™DSP#PU Engine

2x Cortex™ A9 MPCore
UART 32/32 KB I/D Caches

s

GPI0

2xSDID
with DMA

2x USB
with DMA

2x GigE
with DMA

AES, SHA, RSA

General Purpose
AXI Ports

Programmable Logic

2x ADC, Mux,
Thermal Sensor

Multi-Standard 1/0s (3.3V & High-Speed 1.8V)

(System Gates, DSP, RAM)

PCle Gen2
1-8 Lanes

Multi-Gigabit Transceivers

Familia Zyng

ARM
Dual-core

Integrado en
el silicio

21



Soft Processors

Soft processors

e No necesitamos una FPGA de ultima
generacion para tener un microprocesador

e Situvieramos una descripcion en
VHDL/Verilog de una ALU, reqistros,
contador de programa, decodificador de
instrucciones... = un microprocesador

e Aunque no esté implementado en silicio
(como una BRAM), podriamos dedicar una
parte de la FPGA a implementar un
microprocesador

22



Soft Processors

4-Port Register File

IEEE 754

Floating-Point
7-Stage Unit

Integer Pipeline

Co-Processor

| 4 1 |
Instruction Data
Cache Cache

[[] Minimum Configuration
. Optional Blocks

64/128 [ cCo-Processors




Soft Processors

No necesitamos
crearlo desde cero

Algunos soft processors:

Microblaze (Xilinx)

Nios |l (Altera)

Leon 4 (Aeroflex Gaisler)
Plasma (Opencores)
OpenSparc

OpenRisc

24



Soft Processors

Algunos problemas:

Configurar los periféricos y mapa de
memoria

Disponer de un toolchain completo
(compilador, linker, etc)

Sistema operativo o programa ‘standalone’
Configurar las BRAM con el ejecutable
Desarrollo de periféricos ‘custom’
Disponer de un modelo de simulacion
Conseguir que arranque el micro!

25



Soft Processors

Algunas ventajas:

e Diseno optimo: HW y SW se encargan
cada uno de lo que les es mas eficiente

e Simplicidad en las comunicaciones de tu
diseno HDL con el exterior: USB, TCP/IP,

e Una actualizacion no es solo cambiar el
programa: podemos anadir periféricos
nuevos (por ejemplo un timer)

26



Soft Processors

Consejos

HW para tareas paralelas

SW para tareas secuenciales

Utilizar HW para funcionalidad critica: si
se cuelga el SW, el HW seguira
funcionando

Utilizar SW para comunicaciones
(TCP/IP): conexion de tu VHDL al exterior

27



Metodologias de disefo avanzado

Metodologias de diseno

Ademas de dominar VHDL avanzado:

e FPGAs como System-on-Chip: Soft
processors y hard macros

e Diseno con IP cores

e Higher Level Synthesis

28



Diseno con |IP cores

Diseno con IP cores

Esfuerzo elevado de desarrollar un
sistema complejo

Reutilizar moédulos que ya estén probados
Reduccion del esfuerzo de disefio
Principal problema es la integracion de

0S modulos:

o Interfaces

o Calidad de la documentacion
o Configuracion de los IP cores




Diseno con |IP cores

IP (Intellectual Property)
Cores deben ser:

Reusables

Configurables

Simulables con los simuladores
estandares de la industria

Con interfaces basadas en estandares
Verificados con un alto nivel de confianza
Completamente documentados

30



Diseno SoC + IP

Buses para
microprocesadores empotrados

|IP cores especificos tienen interfaces
especificos. Un softcore especifico soportara
uno o varios buses:

e PLB, AXI4 (MicroBlaze)

e \Wishbone (‘estandar’ en Opencores y
disenos Free/Open-Source)
e AMBA (Leon)

31



Diseno SoC + IP

Buses para

microprocesadores empotrados

Los IP cores de terceros que integremos y los que
desarrollaremos nosotros deberian tener

un interfaz con el bus elegido

Aunqgue si no necesitamos velocidad podremos
utilizar una conexion por GPIO

De esta forma: diseno de System-On-Chip complejos
utilizando IP cores basados en estandares

32



Diseno con |IP cores

Consejos

Un buen integrador acelera el diseno
tanto o mas que un buen disenador

Hay que entender los ‘quirks’ de los
fabricantes/proveedores

Es extremadamente recomendable
simular casos basicos para hacerse a los
bloques

Leer mucho y probar poco a poco!!

33



Metodologias de disefo avanzado

Metodologias de diseno

e FPGAs como System-on-Chip: Soft
processors y hard macros

e Diseno con IP cores

e Higher Level Synthesis

34



Higher Level Synthesis

Higher Level Synthesis

e VHDL ya es ‘alto nivel’, no obstante en la
actualidad existen herramientas (en
distintos estados de madurez) que
traducen de codigo de mas alto nivel (C,
SystemC, python, etc) a hardware

35



Higher Level Synthesis

Operations

void fir (

}

data_t "y,
coef_tc[4],
data_t x

) {

static data_t shift_reg[4];
acc_tacc;
inti;

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {
acc+=x"c[0];
shift_reg[0]=x;

} else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*cli];

}

}

RDx

*

*y=acc;

WRyA

From any C code
example ..

Source: Xilinx

Control Behavior

Control & Datapath
Behavior

Finite State Machine
(FSM) states

Control Dataflow

le=t

|

g

o [ e

T
|

T -

|

k

.
B

s

extracted...

Operations are

|

The control is
known

A unified control dataflow
behavior is created.

|

36



coef_t c[4],
data t x

)

static data_t shift_reg[4]:
acc _tacc;
int i;

loop: for (}=3;i>=0;i--) {

P

i

acc+=shift_reg[ il;
}
}
*y=acc;

}

shift_regli]=shif i-1];

Higher Level Synthesis

Funciones: representan la jerarquia
del disefo

Entradas top-level: los argumentos
de la funcion top-level determinan
los puertos del hardware generado

Tipos: los tipos de los datos tienen
influencia en el area y prestaciones

Arrays: pueden influir en la E/S del
dispositivo y convertirse en cuellos
de botella

Operadores: Los operadores en el
codigo C se implementan en

hardware y pueden ser compartidos

por diferentes partes de la
Implementacion 37




Higher Level Synthesis

Source Code

void A() { ..body A..}

void B() { ..body B..} foo_top
void C() {

}
void D() {

}

RTL hierarchy

B();

B();

void foo_top() {

A(...);

Cl--2);

D(.-.) Each block can be shared like any other component
} provided it’s not in use at the same time

38




Higher Level Synthesis

Consejos

e Al igual que cuando usas un compilador,
tienes mayor facilidad de diseno pero
menor control sobre el resultado final

e El correcto uso de las directivas de
sintesis es fundamental para garantizar
una implementacion eficiente

e 2Xx area, 2 velocidad con respecto a
iImplementaciones VHDL

39



FPGAs para automatizacion

Referencias

e Xilinx Large FPGA Methodology Guide
(UG872)

e MicroBlaze Processor Reference Guide
(UG081, v11.0 - EDK 12.1)

e EDK Concepts, Tools., and Technigues: A
Hands-On Guide to Effective Embedded
System Design (UG683 - EDK 12.1)

40


http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/edk_ctt.pdf

FPGAs para automatizacion

Referencias (ll)

e Xilinx Vivado Design Suite User Guide: High
Level Synthesis
e Michael Keating, Pierre Bricaud, Reuse

Methodology Manual for System-on-a-Chip
Designs

41


http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4

