Advanced digital design
methodologies

Hipolito Guzman Miranda
Profesor Titular
Universidad de Sevilla

Teaching context

B02: Advanced Programmable Logic Systems

e Tema 2: Advanced digital design methodologies

Required prior knowledge:
e FPGA architecture

Introduction

Contexto

e 60+ years of Moore's Law (1965)
e Design Gap
e \erification Gap

FPGA architecture

But before this...

Do you know about what the inside of an
FPGA s like?

Introduction

Complex digital systems

Scaling of complexity:
e Design gap
e \erification gap

8% /| Year | |

]

—— -

!
!
!

e ——— P -

|
|
|
|
1
i
|
|

—— .

——— —

S ——

Logic Transistor Number

2005 2010

Source : SEMATECH

100

10

:
=
$
a
:
-
e
g
&

Design Gap

Design Gap

e Design capacity grows slower than
fabrication capacity

e [f a designer designs at 100 logic gates
per day, and a chip can fit 10M puertas...
we need 100K days to design the
complete system : 500 engineers * 1 year!

gates

Design Size in Millions of
oW
o

0 “

1988

Design
Gap

Verification
Gap

Transistors/Month oY,
Transistors/Chip ©
\X~°°
Design Gap 2 @
‘-9\1'
&
S
QQJ " C\‘\\i\\‘{
(O
Verfication Gap oeg\g“?
Wity
.ca“o“ P\'Qd\)C\\
verl

Time

EUTS
E

' FPGA Capacity, K

e

FPGACapacity

OQutstrips Verification &
Debug Capability

2002 2004 2007 2009 2011
130nm 90 nm 65nm 40nm 28 nm

10

Introduction

Design of complex digital systems

e Specifications
o Describe clearly and unambiguously what the
system must do

e Design
o Implement the actual system

e \erification
o Ensure the design complies with the

specifications
11

Introduction

Challenges in specification

Specify unambiguously

“Moving targets”: changes that the client
asks during the project duration

Increase of system complexity ->
exponential increase of interactions
between elements and failure modes

The requirements document must be kept
updated throughout the project duration

12

Introduction

Challenges in design

High performance requirements
o High throughput

o High bandwidth

o High operation frequency

Technical knowledge of the teams

Specific protocols and FPGA primitives
and IP cores

Mixed Hardware/Software designs

13

Introduction

Challenges in verification

e Functional verification: is the functionality

correct?
o For all possible use cases?
o For all possible configurations?

e Coverage: did we test all our design?
o All code?
o All functionality?

e Can we do this in projects of exponentially
increasing complexity?

14

Design Gap

Design Gap: solutions

e Use of embedded processors (soft
processors / hard macros)

e Usage of IP cores

e Higher Level Synthesis (HLS)

Careful! More complex designs also require
more verification efforts!

15

Verification Gap

Verification Gap: solutions

Verification metrics (when do | know |
have finished verifying?)
Verification methodologies (UVM,

OSVVM, UVWM, pyUVM) Nz

Usage of Verification IP
Usage of hardware
accelerators

S HAPS-54
Virtex-5 LX330
(May-2007)

Advanced design methodologies

Design methodologies

e FPGAs as Systems-on-Chip: Soft
processors and hard macros

e Design with IP cores

e Higher Level Synthesis

17

Advanced design methodologies

Design methodologies

e FPGAs as Systems-on-Chip: Soft
processors and hard macros

e Design with IP cores

e Higher Level Synthesis

18

FPGAs as Systems-on-Chip

FPGAs as Systems-on-Chip

e The evolution of microelectronics
technologies (Moore’'s Law)

e Brings us to the following architecture of a
modern FPGA:

19

FPGAs as Systems-on-Chip

Architecture of a modern FPGA

Apart from 10Bs, CLBs and routing
resources:

Embedded memories (Block RAMSs)

Digital Signal Processing (DSP) Blocks

High-speed communications (Gigabit
transceivers, PClexpress, ...)
Microprocessors!

20

Processing System

Flash Controller
NOR, NAND, SRAM, Quad SPI

32;," AMBA® Interconnect

12C
2x

Muitiport DRAM Controfier
DDR3, DDR3L, DOR2

CAN NEON™DSP#PU Engine

NEONDSPFPU Engine

2x Cortex™ A9 MPCore

UART 32/32 KB |I/D Caches
6PI0 '

2xSDID
with DMA

2x USB
with DMA

2x Gigk

with DMA AMBA Interconnect

Cortex- A9 MPCore
32732 KB 1/D Caches

Security
AES, SHA, RSA

AMBA Interconnect

General Purpose ACP High Performance
AXI Ports AXI Ports
2% A)l()Acn.lidux, Programmable Logic r;c;e l;nmze
UWCWZECETS (System Gates, DSP, RAM) =3 RS

Multi-Standard 1/0s (3.3V & High-Speed 1.8V)

Multi-Gigabit Transceivers

Zyng Family

Dual-core
ARM
integrated Iin
Silicon

21

Soft Processors

Soft processors

e \We don’t need a next-generation FPGA to
have an embedded microprocessor

e |f we had a VHDL/Verilog description of an
ALU, registers, progam counter, instruction
decoder, ... = a microprocessor

e Even if it's not implemented in silicon (like a
BRAM), we could dedicate a portion of the
FPGA to implementing a microprocessor.

22

Soft Processors

4-Port Register File

IEEE 754

Floating-Point
7-Stage Unit

Integer Pipeline

Co-Processor

| 4 1 |
Instruction Data
Cache Cache

[[] Minimum Configuration
. Optional Blocks

64/128 [cCo-Processors

Soft Processors

Ve don’t need to create them from
scratch

Some soft processors:

Microblaze (Xilinx)

Nios |l (Altera)

Leon 4 (Aeroflex Gaisler)
Plasma (Opencores)
OpenSparc

OpenRisc

24

System-on-Chip

Some problems:

e Configure peripherals and memory map
Avalilability of a complete toolchain
(compiler, linker, etc)

Operating System or standalone program?
Configure BRAMs with the executable
Development of custom peripherals

Availability of a simulation model
Getting the microprocessor to boot!

25

System-on-Chip

Some advantages:

e Optimal design: HW and SW each handle
what they do better

e Simplicity in communication of your HDL
design with the outside world: USB,
TCPI/IP, ...

e An update is not only changing the
program: we can add new peripherals (for
example, a timer)

26

System-on-Chip

Tips
HW for parallel/concurrent task

SW for sequential tasks

Use HW for critical functionality: even if
the SW hangs, the HW will continue to
function

Use SW for communications (TCP/IP):
connect your VHDL to the outside world

27

Advanced design methodologies

Design methodologies

Apart from mastering advanced VHDL
concepts:

e FPGAs as System-on-Chip: Soft
processors and hard macros

e Design with IP cores

e Higher Level Synthesis

28

Designing with |IP cores

Design with IP cores

High effort required to develop a complex
system

Resue already-tested modules
Reduction of design effort

The main problem is the integration of

the modules:

o Interfaces

o Quality of documentation

o Configuration of the IP cores

Designing with |IP cores

IP (Intellectual Property)
Cores must be:

Reusables

Configurables

Simulables with industry-standard
simulators

With standards-based interfaces
Verified to a high level of confidence
Completely documented

30

SoC + IP design

Buses for embedded processors

Specific IP cores have specific interfaces. A

specific softcore (soft processor) will support
one or more buses:

e PLB, AXI4 (MicroBlaze)

e \Wishbone (‘'standard’ in Opencores and
Free/Open-Source designs)
e AMBA (Leon)

31

SoC + IP design

Buses for embedded processors

Third-party IP cores that we integrated, and the ones
we develop ourselves should interface with the
chosen bus

Although if we don’t need speed we could use a
GPIO connection

This way: design of complex Systems-On-Chip using
standards-based IP cores

32

Designing with |IP cores

Tips
A good integrator speeds up the process
as much as, or even more than, a good
designer

Manufactures and providers have their
own ‘quirks’ which must be understood

It is extremely advisable to simulate basic

cases to become familiar with the blocks
Read a lot and try things out little by little!

33

Advanced design methodologies

Design methodologies

e FPGAs as System-on-Chip: Soft
processors and hard macros

e Design with IP cores

e Higher Level Synthesis

34

Higher Level Synthesis

Higher Level Synthesis

e VHDL is already ‘high level’, ya es ‘alto
nivel’, however, there are currently tools
(in different stages of maturity) that
translate from higher level code (C,
SystemC, python, etc) to hardware

35

Higher Level Synthesis

Operations

void fir (

}

data_t "y,
coef_tc[4],
data_t x

) {

static data_t shift_reg[4];
acc_tacc;
inti;

acc=0;
loop: for (i=3;i>=0;i--) {

if (i==0) {
acc+=x"c[0];
shift_reg[0]=x;

} else {
shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*cli];

}

}

RDx

*

*y=acc;

WRyA

From any C code
example ..

Source: Xilinx

Control Behavior

Control & Datapath
Behavior

Finite State Machine
(FSM) states

Control Dataflow

le=t

|

g

o [e

T
|

T -

|

k

.
B

s

extracted...

Operations are

|

The control is
known

A unified control dataflow
behavior is created.

|

36

coef_t c[4],
data t x

)

static data_t shift_reg[4]:
acc taoc

'Ioop for(-3 i>=0;3i--) {

shm reg[o X

acc+=shift_reg(il;
}
}
*y=acc;

}

shift_reg[i]=shif i-1];

Higher Level Synthesis

Functions: represent the design’s
hierarchy

Top-level inputs: the arguments of
the top-level function determine the
ports of the generate hardware

Types: data types have influence in
area and performance

Arrays: can influence the device’s
/O and become bottlenecks

Operators: Operators in the C code
are implemented in hardware and
can be shared by different parts of
the implementation

37

Higher Level Synthesis

Source Code

void A() { ..body A..}

void B() { ..body B..} foo_top
void C() {

}
void D() {

}

RTL hierarchy

B();

B();

void foo_top() {

A(...);

Cl--2);

D(.-.) Each block can be shared like any other component
} provided it’s not in use at the same time

38

Higher Level Synthesis

Tips

e Just like when using a compiler, you have
greater ease of design but less control
over the final result

e The correct use of synthesis directives is
fundamental to ensure an efficient
iImplementation

e 2X area, /2 speed with respect to VHDL
implementations

39

References

e Xilinx Large FPGA Methodology Guide
(UG872)

e MicroBlaze Processor Reference Guide
(UG081, v11.0 - EDK 12.1)

e EDK Concepts, Tools., and Technigues: A
Hands-On Guide to Effective Embedded
System Design (UG683 - EDK 12.1)

40

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/edk_ctt.pdf

References (ll)

e Xilinx Vivado Design Suite User Guide: High
Level Synthesis
e Michael Keating, Pierre Bricaud, Reuse

Methodology Manual for System-on-a-Chip
Designs

41

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4

