
Advanced digital design 
methodologies

Hipólito Guzmán Miranda
Profesor Titular

Universidad de Sevilla
1



Teaching context

2

B02: Advanced Programmable Logic Systems
● Tema 1: FPGA architecture
● Tema 2: Advanced digital design methodologies
● Tema 3: Advanced VHDL
● Tema 4: Verification capabilities for digital circuits

Required prior knowledge:
● FPGA architecture



Contexto

● 60+ years of Moore’s Law (1965)
● Design Gap
● Verification Gap

Introduction

3



But before this…

Do you know about what the inside of an 
FPGA is like?

FPGA architecture

4



Complex digital systems

Scaling of complexity:
● Design gap
● Verification gap

Introduction

5



Design Gap

Design Gap

6



Design Gap

● Design capacity grows slower than 
fabrication capacity

● If a designer designs at 100 logic gates 
per day, and a chip can fit 10M puertas… 
we need 100K days to design the 
complete system : 500 engineers * 1 year!

Design Gap

7



Verification Gap

Verification Gap

8



Verification Gap

Verification Gap

9



El ‘Verification Gap’

El ‘Design Gap’

10



Design of complex digital systems

● Specifications
○ Describe clearly and unambiguously what the 

system must do

● Design
○ Implement the actual system

● Verification
○ Ensure the design complies with the 

specifications

Introduction

11



Challenges in specification

● Specify unambiguously
● “Moving targets”: changes that the client 

asks during the project duration
● Increase of system complexity -> 

exponential increase of interactions 
between elements and failure modes

● The requirements document must be kept 
updated throughout the project duration

Introduction

12



Challenges in design

● High performance requirements
○ High throughput
○ High bandwidth
○ High operation frequency

● Technical knowledge of the teams
● Specific protocols and FPGA primitives 

and IP cores
● Mixed Hardware/Software designs

Introduction

13



Challenges in verification
● Functional verification: is the functionality 

correct?
○ For all possible use cases?
○ For all possible configurations?

● Coverage: did we test all our design?
○ All code?
○ All functionality?

● Can we do this in projects of exponentially 
increasing complexity? 

Introduction

14



Design Gap: solutions

● Use of embedded processors (soft 
processors / hard macros)

● Usage of IP cores
● Higher Level Synthesis (HLS)

Careful! More complex designs also require 
more verification efforts!

Design Gap

15



Verification Gap: solutions

● Verification metrics (when do I know I 
have finished verifying?)

● Verification methodologies (UVM, 
OSVVM, UVVM, pyUVM)

● Usage of Verification IP
● Usage of hardware

accelerators

Verification Gap

16



Design methodologies

● FPGAs as Systems-on-Chip: Soft 
processors and hard macros

● Design with IP cores
● Higher Level Synthesis

Advanced design methodologies

17



Design methodologies

● FPGAs as Systems-on-Chip: Soft 
processors and hard macros

● Design with IP cores
● Higher Level Synthesis

Advanced design methodologies

18



FPGAs as Systems-on-Chip

● The evolution of microelectronics 
technologies (Moore’s Law)

● Brings us to the following architecture of a 
modern FPGA:

FPGAs as Systems-on-Chip

19



Architecture of a modern FPGA

● Apart from IOBs, CLBs and routing 
resources:

● Embedded memories (Block RAMs)
● Digital Signal Processing (DSP) Blocks
● High-speed communications (Gigabit 

transceivers, PCIexpress, …)
● Microprocessors!

FPGAs as Systems-on-Chip

20



Zynq Family

Dual-core 
ARM 
integrated in 
Silicon

21



Soft processors
● We don’t need a next-generation FPGA to 

have an embedded microprocessor
● If we had a VHDL/Verilog description of an 

ALU, registers, progam counter, instruction 
decoder, … = a microprocessor

● Even if it's not implemented in silicon (like a 
BRAM), we could dedicate a portion of the 
FPGA to implementing a microprocessor.

Soft Processors

22



Soft processors

Soft Processors

23



We don’t need to create them from 
scratch

Some soft processors:
● Microblaze (Xilinx)
● Nios II (Altera)
● Leon 4 (Aeroflex Gaisler)
● Plasma (Opencores)
● OpenSparc
● OpenRisc
● ...

Soft Processors

24



Some problems:
● Configure peripherals and memory map
● Availability of a complete toolchain 

(compiler, linker, etc)
● Operating System or standalone program?
● Configure BRAMs with the executable
● Development of custom peripherals
● Availability of a simulation model
● Getting the microprocessor to boot!

System-on-Chip

25



Some advantages:
● Optimal design: HW and SW each handle 

what they do better
● Simplicity in communication of your HDL 

design with the outside world: USB, 
TCP/IP, …

● An update is not only changing the 
program: we can add new peripherals (for 
example, a timer)

System-on-Chip

26



Tips
● HW for parallel/concurrent task
● SW for sequential tasks
● Use HW for critical functionality: even if 

the SW hangs, the HW will continue to 
function

● Use SW for communications (TCP/IP): 
connect your VHDL to the outside world

System-on-Chip

27



Design methodologies

Apart from mastering advanced VHDL 
concepts:

● FPGAs as System-on-Chip: Soft 
processors and hard macros

● Design with IP cores
● Higher Level Synthesis

Advanced design methodologies

28



Design with IP cores
● High effort required to develop a complex 

system
● Resue already-tested modules
● Reduction of design effort
● The main problem is the integration of 

the modules:
○ Interfaces
○ Quality of documentation
○ Configuration of the IP cores

Designing with IP cores

29



IP (Intellectual Property)
Cores must be:

● Reusables
● Configurables
● Simulables with industry-standard 

simulators
● With standards-based interfaces
● Verified to a high level of confidence
● Completely documented

Designing with IP cores

30



Buses for embedded processors
Specific IP cores have specific interfaces. A 
specific softcore (soft processor) will support 
one or more buses:
● PLB, AXI4 (MicroBlaze)
● Wishbone (‘standard’ in Opencores and 

Free/Open-Source designs)
● AMBA (Leon)

SoC + IP design

31



Buses for embedded processors
Third-party IP cores that we integrated, and the ones 
we develop ourselves should interface with the 
chosen bus

Although if we don’t need speed we could use a 
GPIO connection

This way: design of complex Systems-On-Chip using 
standards-based IP cores

SoC + IP design

32



Tips
● A good integrator speeds up the process 

as much as, or even more than, a good 
designer

● Manufactures and providers have their 
own ‘quirks’ which must be understood

● It is extremely advisable to simulate basic 
cases to become familiar with the blocks

● Read a lot and try things out little by little!

Designing with IP cores

33



Design methodologies

● FPGAs as System-on-Chip: Soft 
processors and hard macros

● Design with IP cores
● Higher Level Synthesis

Advanced design methodologies

34



Higher Level Synthesis

● VHDL is already ‘high level’, ya es ‘alto 
nivel’, however, there are currently tools 
(in different stages of maturity) that 
translate from higher level code (C, 
SystemC, python, etc) to hardware

Higher Level Synthesis

35



Higher Level Synthesis

36Source: Xilinx



Functions: represent the design’s 
hierarchy
Top-level inputs: the arguments of 
the top-level function determine the 
ports of the generate hardware
Types: data types have influence in 
area and performance
Arrays: can influence the device’s 
I/O and become bottlenecks
Operators: Operators in the C code 
are implemented in hardware and 
can be shared by different parts of 
the implementation

Higher Level Synthesis

37



Higher Level Synthesis

38



Tips

● Just like when using a compiler, you have 
greater ease of design but less control 
over the final result

● The correct use of synthesis directives is 
fundamental to ensure an efficient 
implementation

● 2x area, ½ speed with respect to VHDL 
implementations

Higher Level Synthesis

39



References
● Xilinx Large FPGA Methodology Guide 

(UG872)
● MicroBlaze Processor Reference Guide 

(UG081, v11.0 - EDK 12.1)
● EDK Concepts, Tools, and Techniques: A 

Hands-On Guide to Effective Embedded 
System Design (UG683 - EDK 12.1)

40

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug872_largefpga.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/edk_ctt.pdf


References (II)
● Xilinx Vivado Design Suite User Guide: High 

Level Synthesis
● Michael Keating, Pierre Bricaud, Reuse 

Methodology Manual for System-on-a-Chip 
Designs

41

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4
http://encore.fama.us.es/iii/encore/record/C__Rb1701718__Spierre%20bricaud__Orightresult__U__X4

