

STATEMENT OF WORK

RCO

ROBOT DE CAMPO Y OCIO

Autores: Gabriela Cano Azuaga

María Alejandra Díaz-Capmany Carrasco

Daniel Sánchez Cascajosa

Daniel Mellado-Damas Sánchez

Lucía Pérez Guerrero

Gabriel Corrales Fernández Lola Hernández Cañizares Víctor Casado Adamov

ÍNDICE

INTRODUCCIÓN/PROPÓSITO	2
Descripción del problema	2
Estado del arte	4
Solución propuesta	6
ALCANCE	8
Objetivos	8
Requisitos	8
Descripción del sistema	10
WBS	10
PERIODO Y PLANIFICACIÓN	10
Periodo de trabajo	10
CALENDARIO DE ENTREGABLES	11
Riesgos de Seguridad	15
2.1. Seguridad del Usuario	15
2.2. Seguridad de Datos y Privacidad	15
3. Riesgos Ambientales y de Uso	15
3.1. Factores Externos en Aplicaciones de Exploración	15
4. Riesgos de Producción y Costos	16
4.1. Disponibilidad de Componentes y mantenimiento	16
5. Riesgos en la Experiencia del Usuario	17
5.1. Curva de Aprendizaje Elevada	17
5.2. Posibles Frustraciones en Niños (si es un juguete didáctico)	17
CRITERIOS DE ACEPTACIÓN	18
Criterios de aceptación	18
Matriz de verificación	18
Plan de pruebas	19
MATERIAL Y PRESUPUESTO	28
Material necesario	28
Presupuesto	30
REFERENCIAS	31
Anexos (si procede)	32

No hace falta que dejéis el "si procede" :D - Si tenéis anexos, pues una sección 'Anexos', y si no, no hace falta que tengáis la sección

INTRODUCCIÓN/PROPÓSITO

los robots no crecen, crecerá su uso, el mercado, o la demanda

Descripción del problema

Los robots de seguridad, ocio y uso doméstico están creciendo rápidamente en los últimos años. La gran demanda de estos servicios móviles hace que cada vez se invierta más dinero en ellos [1]. En particular, los robots de ocio, con sus capacidades de entretenimiento, aprendizaje y personalización, han abierto la puerta a nuevas posibilidades mientras que los *field robots* (robots de campo), se han estado desarrollando y ahora son capaces de operar en entornos reales como la desactivación de objetos peligrosos, manipulación de sustancias tóxicas y la vigilancia en zonas de difícil acceso.

Adaptar estos últimos con funciones de ocio, como ofrecer juegos interactivos, no solo amplía su utilidad, sino que también los convierte en herramientas multiusos capaces de combinar protección y diversión en un solo dispositivo.

Aunque los robots de campo no son los que mayor volumen de ventas tiene, se puede observar en la figura 1 su aumento debido a que pueden sustituir a personas en tareas peligrosas como la desactivación de bombas.

Recordad que para gráficas es mejor png que jpg

Fig 1:Ventas de robots para uso profesional. Fuente: international Federation of Robotics [1].

El pie de figura está pixelado, eso no debería ocurrir

El uso de estos robots por control remoto para ese tipo de tareas está creciendo considerablemente [2] debido a que son trabajos donde puedes perder la vida por una equivocación. El robot puede detectar objetos peligrosos mediante sensores o una cámara, y gracias a los grados de libertad del brazo puede manipular de tal forma que ayude al operario. Este trabajo no se podría realizar sin un robot dedicado a la seguridad es por eso que este tipo de manipuladores son esenciales para garantizar la integridad del trabajador.

añadir coma

en 2033

Por otro lado, se estima que el tamaño de mercado de robots de defensa aumentará hasta 38 mil millones de dólares, con una tasa de crecimiento anual de 7.69% desde 2023 [3]. Dentro de este mercado, los robots EOD (*Explosive Ordnance Disposal*) destacan como una solución clave para mitigar los riesgos asociados con la eliminación de artefactos explosivos y manipulación de sustancias tóxicas. Al emplear un robot EOD, el personal especializado puede operar desde una distancia segura, visualizando el área gracias a una cámara en tiempo real y manipulando objetos peligrosos sin exponerse directamente, lo que reduce significativamente el riesgo de lesiones o muerte. Este crecimiento del mercado refleja la creciente importancia de los robots de defensa, como los EOD, en la protección de vidas humanas y el fortalecimiento de la seguridad en operaciones críticas.

Global Defense Robotics Market

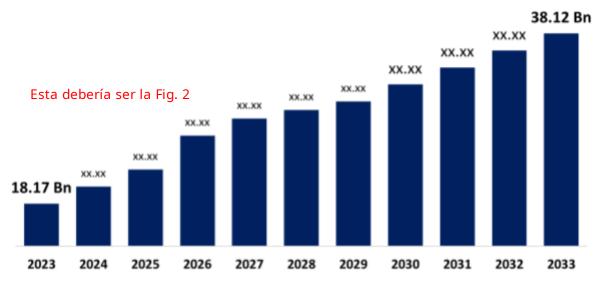
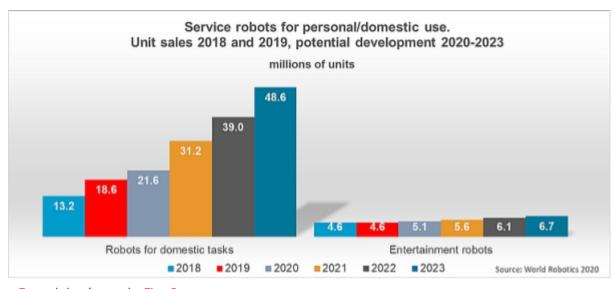



Imagen y pie de figura pixelados. Debéis exportarlos a mayor calidad y en formatos

Fig. 3. Tamaño de mercado estimado de los robots de defensa. Fuente: Sphericals de compresión Insights [3]. sin pérdida (como png)

En el ámbito doméstico y de ocio también hay necesidad de robots accesibles. En la figura 2 se muestra que se venden más unidades de robots para tareas domésticas que para ocio pero se ve que el volumen individual de ambos aumentar conforme los años.

falta verbo: "conforme los años pasan" (es un poco informal) o "con el paso de los años"

Esta debería ser la Fig. 3

Fig. 2: Ventas de robots de uso doméstico y personal. Fuente: International Federation of Robotics [1].

Esta descompensación se debe a la búsqueda del ser humano de encontrar soluciones rápidas a tareas del hogar que le requerirían más tiempo. Esto hace que sea aún más interesante invertir en opciones de entretenimiento. Aunque esté a veces subestimado, el ocio y el entretenimiento puede ayudar a mejorar el desarrollo integral de las personas, especialmente en los niños. Por ejemplo, los robots controlados mediante gestos podrían ayudar a los jóvenes con discapacidades en los dedos a aumentar sus habilidades motrices y cognitivas además de reforzar la inclusión social.

Non sequitur (no sigue): la conclusión no se extrae de las premisas: ¿por qué si hay más ventas en una categoría es interesante invertir en la otra??

Yo creo que esa frase de que es interesante invertir en robots de entretenimiento debería ir al final del párrafo, tras las otras explicaciones que dais

Muy interesante y bien fundamentada la descripción del problema, bien por poner referencias con números que indican el tamaño del mercado. Es posible que pueda haber un aumento potencial del mercado de los robots de ocio y posiblemente un robot de ocio de bajo coste tuviera cabida en ese mercado.

Estado del arte

El estado del arte en robótica móvil y manipulación se puede dividir en tres categorías relevantes para nuestro proyecto: (1) vehículos todoterreno con capacidad de manipulación, (2) interfaces de control basadas en gestos, y (3) sistemas de percepción visual para interacción con objetos.

Vehículos todoterreno con manipulación: La seguridad siempre ha sido importante; por eso, con el paso de los años hemos ido avanzando y se han creado sistemas o métodos más seguros para los operarios. Uno de los primeros robots utilizados para desactivación de bombas fue la Carretilla, diseñada en 1972 por el Ejército Británico [4]. Es un robot controlado a distancia para evitar daños o pérdidas humanas ante cualquier peligro de explosión.

Fig. 3 : Carretilla usada por el Ejécito Británico. Fuente: Wikipedia [4] Ya veis que todos los pies de figura están pixelados

Actualmente los vehículos antiexplosivos suelen llevar un brazo robótico con más grados de libertad que la carretilla. Eso le permite generar movimientos más precisos y seguros a la hora de desactivar bombas como VALI [5]. Sin embargo, sus brazos manipuladores suelen ser grandes y pesados lo que los limita a cualquier otra tarea que no sea fuera al aire libre.

en el caso de

Interfaces de control por gestos: No es novedad que el control por gestos está creciendo. Un ejemplo es el mando de la Nintendo Wii, creada para innovar con sus juegos exclusivos de deportes [6]. El mando incluye un IMU que mide aceleración lineal permitiendo que el movimiento de la manos y el brazo sea intuitivo a la hora de jugar. Posteriormente se han

El enlace de [6] aparentemente está roto

creado proyectos de robótica utilizando el mando de Wii debido a su comunicación Bluetooth, control por botones y movimiento, y todo eso por muy bajo precio [7].

Muchos dispositivos comerciales usan IMUs para control gestual, tanto para interfaces esta frase digitales más que a robótica física, con pesos ligeros y costes moderados. Investigaciones no tiene recientes han avanzado en el control de brazos robóticos mediante gestos [8], aunque no se sentido han aplicado ampliamente a vehículos móviles para seguridad o vigilancia.

No diría que [8] es una investigación, en su lugar diría "trabajos recientes han avanzado.explicación: a qué os **Percepción visual**:Los sistemas robóticos modernos incluyen cámaras y detección de objetos por color. Se utilizan cámaras porque se reconocen como super sensores, algunas permiten capturar profundidad pudiendo visualizar el entorno en 3D [9]. El problema de esto es que las cámaras que se utilizan suelen ser caras porque incorporan controladores dentro del mismo.

y no sólo por los controladores, son otras tecnologías como las cámaras de tiempo de vuelo

En cuanto a los componentes utilizados en cada una de estas categorías, destaca el IMU(Unidad de Medición Inercial). Wii remote integra el ADXL330 de Analog Devices, un sensor de 3 ejes que mide la aceleración lineal. Por su parte, en el caso del vehículo, los ejemplos previos muestran mayor interés por el uso de cadenas que por las ruedas. Este diseño reduce la necesidad de incorporar motores adicionales, reduciendo el coste, v permitiendo mejor movilidad por terrenos irregulares, como el suelo con piedras, tierra o césped. Los robots como VALI [5] son híbridos, es decir, tienen una plataforma móvil con un manipulador encima. Para el aumento del torque se usan servomotores con reductoras en el brazo robótico y sus versiones suelen tener entre 4 o 5 grados de libertad. Esto permite que el brazo pueda transportar objetos o manejar tareas difíciles a distancia. El chasis fue construido a partir de chapa de duraluminio ANSI 6063 de 0.25" de espesor. También incluye una cámara panorámica para visualizar en tiempo real el entorno.

Los proyectos creados tienen en sí un nicho más específico. No existe un sistema integrado que combine un vehículo con cadenas, un brazo de 4 grados de libertad, control gestual intuitivo mediante IMUs y percepción de color, todo en una plataforma accesible tanto para seguridad (desactivación de objetos peligrosos, manipulación de tóxicos, vigilancia) como para ocio. Esto hace deseable nuestra solución propuesta.

Se echa en falta alguna patente, por completar la búsqueda.

referís con

sensores'?

'super

Solución propuesta

Se propone un sistema robótico integrado que está compuesto por un coche con cadenas, impulsado por dos motores DC, y un brazo robótico de 4 grados de libertad equipado con una pinza y una cámara montada en su extremo. El vehículo y el brazo se controlarán de forma intuitiva mediante dos IMUs colocadas en los brazos del usuario, permitiendo movimientos naturales de las manos para dirigir el coche y manipular el brazo. Se dispondrá de dos modos para controlar el coche y el brazo, pudiendo elegir gracias a una pantalla táctil integrada. La cámara proporcionará visión en tiempo real que servirá para vigilar o controlar el sistema a larga distancia, mientras que un sistema de percepción basado en visión artificial detectará y clasificará objetos por color, habilitando tareas como identificar y recoger objetos específicos del suelo.

Muy interesante

El diseño está orientado a dos casos de uso principales: (1) ocio, como un robot interactivo para explorar y manipular entornos de manera divertida y segura, y (2) seguridad, como desactivar objetos peligrosos, manipular sustancias tóxicas o vigilar zonas de difícil acceso. Esta solución aborda los problemas anteriores del peso y coste de los proyectos ya creados para seguridad y la poca actividad de robots móviles con brazo robótico controlado por gestos de la mano.

ALCANCE

Objetivos

OBJ.1: Proporcionar un control intuitivo y natural a través de gestos de la mano

Se busca permitir que los usuarios sean capaces de dirigir tanto el vehículo móvil como el brazo robótico a través de movimientos gestuales simples y precisos. Para ello, se utilizarán IMUs en las manos del usuario para garantizar una buena experiencia de uso tanto en aplicaciones profesionales como recreativas.

OBJ.2: Garantizar la manipulación precisa de objetos con el brazo

El sistema debe ser capaz de identificar y recoger objetos específicos del entorno de trabajo mediante la pinza, el brazo robótico y el sistema de visión mediante la cámara.

OBJ.3: Movimiento firme en diferentes terrenos

El vehículo con cadenas debe ser capaz de desplazarse de manera eficiente y estable en superficies irregulares, ampliando así su utilidad en el campo de la exploración y vigilancia.

OBJ.4: Facilitar aplicaciones duales de ocio y seguridad

El sistema debe ser funcional y confiable para tareas profesionales, pero también divertido y seguro para poder ser utilizado en ocio.

La confiabilidad para tareas profesionales puede ser complicada de conseguir con el presupuesto que tenemos, pero tampoco me parece mal objetivo (luego relajáis un poco los requisitos)

Requisitos

Para asegurar el cumplimientos de los objetivos mencionados anteriormente y abordar eficazmente el problema planteado, siendo fundamental definir ciertos requisitos a cumplir.

es

Requisitos funcionalidades del proyecto

F.1- Control mediante gestos del vehículo y brazo

Capacidad para interpretar señales de los dos IMUs, los cuales están colocados en las manos de los usuarios, para controlar la dirección y velocidad del vehículo móvil.

Prestaciones advacentes

- P.1.1- Latencia del control gestual del vehículo

La capacidad de respuesta entre el movimiento del usuario y el desplazamiento del sistema no debe superar los — . (por determinar)

- **P.1.2**- Distancia de control

El usuario deberá ser capaz de controlar el sistema a —-- distancia.

(por determinar)

F.2- Transmisión de video en tiempo real

La cámara deberá transmitir en vivo al usuario para facilitar el control y supervisión del entorno

Prestaciones adyacentes

- P.2.- Calidad y latencia de la transmisión de video

La cámara debe transmitir video en vivo con una velocidad mínima de —-p y un retraso no superior a —-- añadid el "(por determinar)" a todos estos que no son conocidos aún

F.3- Movilidad en terrenos irregulares

El vehículo debe poder desplazarse sobre sobre diferentes superficies utilizando las cadenas accionadas con motores.

Prestaciones advacentes

- **P.3**- Velocidad del vehículo

El vehículo alcanza una velocidad de —--m/s en terreno plano y superar obstáculos de —cm de altura e inclinaciones de hasta —°.

REQUISITO	F.1	P1.1	P1.2	F.2	P.2	F.3	P.3
OBJETIVO	OBJ.1	OBJ.2	OBJ.2	OBJ.2	OBJ.2	OBJ.3	OBJ.3
PRIORIDAD	ALTA	ALTA	MEDIA	MEDIA	BAJA	ALTA	BAJA

Perfecto que los requisitos tracen a los objetivos!

Requisitos de diseño

D.1- Tamaño y peso del sistema

El vehículo tiene un tamaño de —- cm de largo y — cm de ancho, y el brazo debe tener una longitud de — cm. Además, no debe exceder los –kg para garantizar la portabilidad.

D.2- Resistencia al entorno

El sistema debe ser capaz de resistir las condiciones ambientales previstas, como variaciones de temperatura, humedad y vibración, para garantizar su fiabilidad en entornos reales.

REQUISITO	D.1	D.2
OBJETIVO	OBJ.4	OBJ.3
PRIORIDAD	MEDIA	MEDIA

Requisitos de operación

O.1- Interfaz intuitiva

El sistema debe ser fácil de utilizar para los usuarios, sin necesidad de formación técnica al respecto.

O.2- Comunicación inalámbrica

El sistema usará el protocolo ESP-NOW garantizando una comunicación estable entre el control de las manos y el robot.

REQUISITO	0.1	O.2
OBJETIVO	OBJ.1	OBJ.2
PRIORIDAD	ALTA	ALTA

Requisitos eléctricos

E.1- Consumo

No debe sobrepasar los — W de consumo totales.

E.2- Duración de la batería

El sistema debe ser capaz de funcionar durante al menos — min, con un tiempo de recarga no superior a —-.

REQUISITO	E.1	E.2
OBJETIVO	OBJ.4	OBJ.4
PRIORIDAD	MEDIA	MEDIA

Muy bien planteados

Descripción de subsistemas

Coche

Este subsistema tendrá el propósito de permitirle al robot desplazarse por la mayoría de terrenos y de alojarme el microprocesador y el sistema de alimentación del sistema.

Se compondrá de: motores, chasis, correas, batería, microcontrolador esp32.

Tanto la batería como el microcontrolador serán comunes a los motores del coche y los servos del brazo.

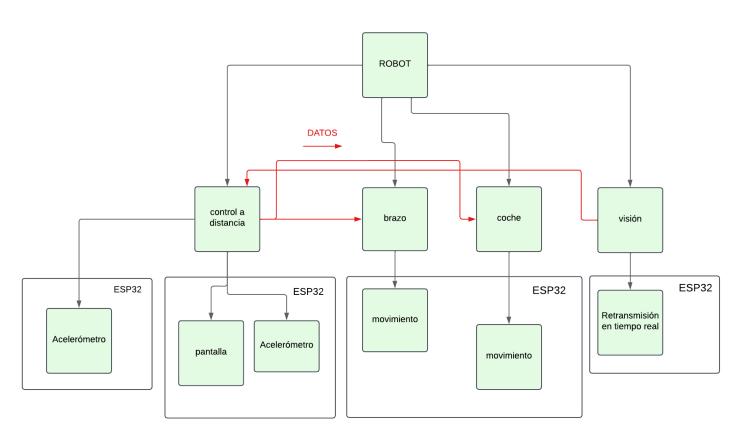
El microcontrolador del coche se comunicará con el subsistema de control a distancia mediante la comunicación que se evalúe más apta para la tarea.

Las correas y partes del chasis serán impresas en 3D.

Brazo

Se tratará de un robot que se moverá gracias a 4 servomotores controlados por el microcontrolador que residirá en el chasis, en el que se ejecutarán los algoritmos de cinemática inversa.

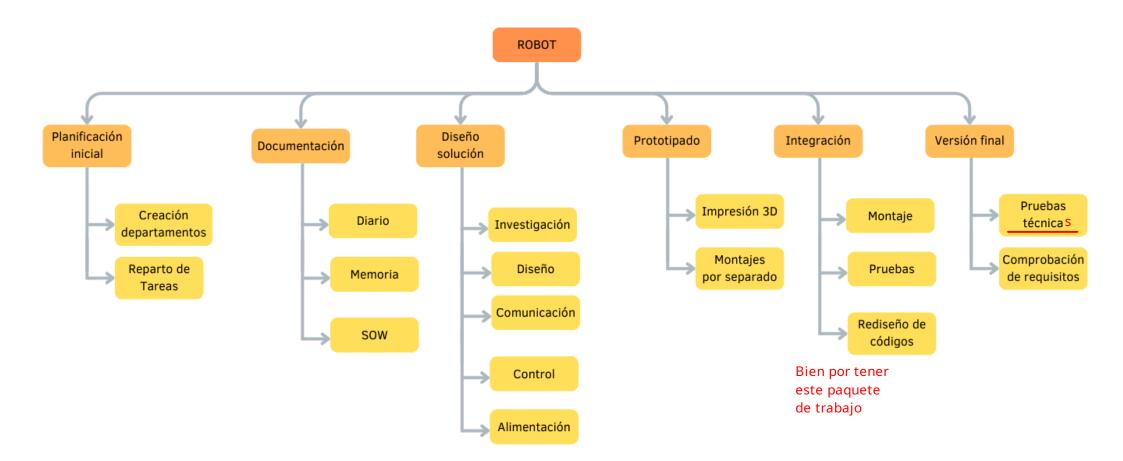
Control a distancia


Permitirá controlar de forma intuitiva el robot desde una distancia segura, teniendo retransmisión en tiempo real de la cámara.

Se implementará con dos guantes que detectarán la inclinación de las manos, con las que se controlará el movimiento del coche y el brazo.

En uno de los guantes habrá una pantalla que aumentará la interfaz de usuario.

Visión


Será el subsistema que se encargará de todo lo relacionado con la cámara, tanto de la captura de las imágenes y su transmisión como de la alimentación de la placa y su integración en el brazo.

Este diagrama sugiere que usáis 4 ESP32, pero no vais a usar tantos, ¿no? Si es sólo uno, debería haber una única caja etiquetada como "ESP32"

Work Breakdown Structure

Bien por ponerla apaisada

Se ve completo, buen trabajo

PERIODO Y PLANIFICACIÓN

Periodo de trabajo

El 20 de mayo son las demostraciones en clase (el último día de clase). Luego tenéis hasta el día de la convocatoria para entregar la documentación final

La duración del proyecto será de 3 meses y 18 días, inicializándose el miércoles 5 de febrero de 2025 y finalizando el viernes 23 de mayo. Asimismo, el periodo del trabajo se puede subdividir en subperiodos o pequeñas fases, principalmente en 3:

1ª Fase: Desarrollo de la idea.

Esta fase consta del proceso de elección del proyecto, es decir, elegir aquel que se ajuste mejor a nuestras necesidades y expectativas. Así como del detalle en cada uno de los aspectos de nuestro proyecto.

Para la elección de nuestro proyecto, además de una lluvia de ideas inicial, hicimos un rápido estudio acerca de la documentación que ya existía sobre proyectos similares, para poder apoyarnos y orientarnos a la hora de determinar qué camino era más óptimo para su realización. Asimismo, esbozamos una idea general de las tareas que habría que ir haciendo así como una estimación de los componentes necesarios y un presupuesto aproximado, con el objetivo de poder predecir a priori, si podríamos llegar a salirnos del presupuesto (80€) y del margen con el que contábamos para ello. Finalmente comparamos proyectos, nos asesoramos sobre su viabilidad de acuerdo al tiempo que teníamos para entregarlo y escogimos. Muy bien planteado

A continuación hubo un proceso de refinamiento en el que empezamos a pulir las ideas que ya teníamos yendo desde un nivel más abstracto hacia uno más concreto y detallado.

El proceso de selección duró días desde el miércoles 5 de febrero hasta el martes 11 de febrero.

2ª Fase: Construcción del coche y del brazo robótico.

En este periodo ideamos un diseño a grosso modo el brazo robótico indicando su número de grados de libertad, eslabones y tipos de articulaciones. Del mismo modo planteamos el diseño del cochecito y escogimos las dimensiones que ambos tendrían que tener. Nuestra idea es imprimir las piezas en 3D del brazo robótico y diseñar un chasis grande y resistente al coche capaz de soportar el peso del brazo. Asimismo, para conseguir que nuestro robot pueda moverse por terrenos rocosos hemos decidido incluir una cadena dentada a las ruedas inspirándose para ello en el diseño de las ruedas de los tanques.

inpirándonos Revisad porque parece que teneís algunos espacios extra

3ª Fase: Pruebas

Como, por el momento, el departamento de construcción está diseñando el brazo y el coche, para evitar que se produzca un cuello de botella, el resto del equipo está desarrollando las distintas comunicaciones y programas de recogidas de datos y los estamos probando en

prototipos con el fin de ir verificando lo programado hasta el momento y poder seguir avanzando a pesar de no poder contar aún con el coche y el brazo.

Este periodo de pruebas con el brazo y coche definitivo comenzará el viernes 4 de abril y finalizará el viernes 23 de mayo. el martes 20 de mayo son las demostraciones, así que lo ideal sería terminar el lunes 19 de mayo

Calendario de entregables

Versión Preliminar del SOW (Statement of Work) para Revisión

- Fecha: 3 de abril de 2025
- **Descripción**: Entrega de la versión inicial del documento SOW para su revisión por parte de los interesados, incluyendo objetivos, alcance preliminar y plan de trabajo.

Versión Corregida del SOW

- Fecha: Por determinar
- **Descripción**: Entrega de la versión revisada y ajustada del SOW, incorporando retroalimentación recibida tras la revisión de la versión preliminar.

Informe de Progreso 1

- Fecha: Por determinar
- **Descripción**: Presentación de un informe intermedio que detalle los avances realizados en el proyecto, incluyendo hitos alcanzados, desafíos identificados y próximos pasos.

Demostración del Proyecto

- **Fecha**: 20 de mayo de 2025
- Descripción:
 - Implementación Física del Proyecto: Exhibición funcional del prototipo o sistema desarrollado.
 - Transparencias de la Presentación: Material visual de apoyo para la exposición del proyecto.
 - Vídeo(s) de Demostración: Grabación que muestre el funcionamiento del proyecto, destacando sus características clave.

Documentación Final

- Fecha: 4 de junio de 2025
- **Descripción**: Entrega del paquete completo de documentación final, que incluye:
 - Versión Final del SOW: Documento definitivo con alcance, objetivos y resultados consolidados.

- Memoria Descriptiva de Resultados: Resumen narrativo de los logros, lecciones aprendidas y evaluación del proyecto.
- Documentación Técnica de Bajo Nivel: Detalles técnicos del diseño, implementación y especificaciones
- Autoevaluación de Buenas Prácticas: Reflexión sobre el cumplimiento de estándares y metodologías durante el desarrollo.

Muy bien

Análisis de riesgos

Para este apartado, evaluaremos los posibles problemas (riesgos) que podrían inducir un error en la funcionalidad del robot. Para ello distinguiremos distintos riesgos:

Riesgos Técnicos

Problemas en el reconocimiento de gestos, latencia en la comunicación, fallos en la transmisión de video, consumo de batería elevado.

1.1. Precisión y Latencia en el Reconocimiento de Gestos

Los acelerómetros pueden registrar movimientos erróneos debido a vibraciones o interferencias externas o incluso debido a movimientos imprecisos por parte del usuario. Esto afectaría la precisión del control del coche y del brazo robótico.

Además de hacer pruebas y añadir en el código un rango umbral en torno a los puntos claves de operación del robot (los giros o el gesto de parada del robot) para compensar los posibles movimientos imprecisos que realice el usuario, se podríar incorporar filtros Kalman para la eliminación del ruido sobra el espacio

Del mismo modo, la latencia en la transmisión de datos desde los guantes al coche puede afectar la sincronización entre el gesto y la respuesta del robot.

Con el objeto de mitigar este efecto, hemos decidido utilizar el WIFI Direct ESP NOW que es <u>uno</u> de los protocolos mejor desarrollados entre ESP creado por la empresa Expressif e incorporar varios microcontroladores para evitar una sobrecarga en el procesamiento de datos.

esto suena un poco a publireportaje:D

1.2. Fallos en la Comunicación Inalámbrica

La pérdida de señal entre el usuario y el robot en entornos con interferencias electromagnéticas o largas distancias supondría un grave problema. Por este motivo, adecuándose a las circunstancias en las que se emplearía el robot, se utilizarían protocolos de comunicación más robustos como Lora, especializado en largas distancias.

¿está soportado por los chips que vais a comprar, u os queda margen en el presupuesto por si hubiera que

1.3. Limitaciones de la Cámara ESP y las Cámaras en el Coche/Brazo

compr

Si la velocidad de procesamiento de la imagen se bajaría la calidad de la imagen.

1.4. Energía y Duración de la Batería

El consumo elevado de energía en el coche y el brazo robótico podría reducir el tiempo de operación. Para paliar este riesgo, se optimizarán los recursos y el consumo de energía, eligiendo baterías de larga duración.

TABLA DE RIESGOS TÉCNICOS

PROBLEMA	PROBABILIDAD	PERJUICIO	SOLUCIÓN
Fallos en la comunicación inalámbrica (en el caso de que la situación u objetivo implique comunicación a largas distancias)	MEDIA	ALTO Perderíamos el control sobre el robot, dejando éste de cumplir sus funcionalidades	Usar protocolos de comunicación robustos y de larga distancia como LORA
Latencia en reconocimiento gestos	MEDIA	MEDIO Asincronismo entre el gesto y la respuesta del robot. Comportamiento o respuesta con retardo del robot no deseado	Adición de umbrales de seguridad en el código para eliminar el efecto del ruido
Energía y duración de la batería	ALTA	MEDIO	Optimización de recursos y uso de batería de larga duración
Velocidad de procesamiento de la cámara lenta	BAJA	BAJA	Escoger la cámara adecuado y en caso de ser insuficiente reducir la calidad de la imagen

Riesgos de Seguridad

Posibles golpes del brazo robótico, pérdida de control del coche, acceso no autorizado a los datos.

2.1. Seguridad del Usuario

Existe la posibilidad de que el brazo robótico golpee accidentalmente objetos o a personas debido a movimientos bruscos. Para solucionarlo, implementaremos en el código límites en la velocidad y fuerza del brazo, además de sensores de proximidad. Para evitar riesgo de lesiones en el usuario por movimientos inesperados del coche o brazo, añadiremos una parada de emergencia en caso de pérdida de control.

Importante, y bien pensado

2.2. Seguridad de Datos y Privacidad

Para aplicaciones a gran escala o confidenciales encriptaríamos las comunicaciones inalámbricas para garantizar que ningún tercero pueda acceder al control del robot y lo manipule.

TABLA DE RIESGOS DE SEGURIDAD

PROBLEMA	PROBABILIDAD	PERJUICIO	SOLUCIÓN
Seguridad del usuario	BAJA	ALTA Lesiones del usuario	Límites de velocidad y fuerza en el código
Seguridad de datos y privacidad	MEDIA	ALTA Filtraciones de información confidencial y plagios	Encriptación de las comunicaciones inalámbricas

Estoy de acuerdo en que la seguridad de la información es importante en un producto desplegado, aunque *Riesgos Ambientales y de Uso* para el prototipo podría ser algo opcional

Mal desempeño en terrenos difíciles, exposición a condiciones extremas.

3.1. Factores Externos en Aplicaciones de Exploración

La exposición del coche a condiciones extremas como humedad, polvo o temperaturas extremas puede resultar un factor muy importante en la vida útil del proyecto.

No obstante, se solventará diseñando la carcasa con materiales resistentes a la intemperie.

TABLA DE RIESGOS AMBIENTALES Y DE USO

PROBLEMA	PROBABILIDAD	PERJUICIO	SOLUCIÓN
Exposición a la intemperie	ALTA	Deterioro de la estructura del robot	Diseño de carcasa con materiales resistentes

Esto parece bastante ambicioso. Siempre tenéis la opción de rebajar un poco los requisitos para el prototipo

Riesgos de Producción y Costos

Escasez de componentes, costos elevados de fabricación.

espacios

4.1. Disponibilidad de Componentes y mantenimiento

Uno de los riesgos más importantes que pueden resultar un factor limitante para el desarrollo del proyecto es el mantenimiento del mismo. Esto es crucial pues si algún dispositivo se quema, deja de funcionar o simplemente se rompe se debe contar con más unidades de repuesto. El mantenimiento no sólo garantiza el correcto funcionamiento del robot sino que también permite alargar su vida útil.

Por este motivo, en nuestro presupuesto hemos destinado una parte al mantenimiento, para posibles reparaciones por rotura o quenta de componentes (situaciones que se dan especialmente durante la fase de pruebas). Igualmente para garantizar que en el inventario hay suficientes componentes, en los pedidos que se están realizando, se están pidiendo un número ligeramente superior de componentes a los necesarios.

Para propósitos a gran escala, se contaría con múltiples proveedores para mitigar este riesgo.

TABLA DE RIESGOS DE PRODUCCIÓN Y COSTOS

PROBLEMA	PROBABILIDAD	PERJUICIO	SOLUCIÓN
Disponibilidad de componentes y mantenimiento	ALTA	MUY ALTA Supondría la paralización del proyecto (test, espera a la llega de nuevos componentes)	Añadir un presupuesto de mantenimiento y contar en el inventario con un par de componentes de cada tipo de reserva

Bien pensado

Riesgos en la Experiencia del Usuario

Dificultad de aprendizaje.

5.1. Curva de Aprendizaje Elevada

Se puede dar el caso de que algunos usuarios con movilidad reducida puedan requerir tiempo para adaptarse a los gestos de control.

Para agilizar este proceso de adaptación se podrían incluir modos de entrenamiento y opciones de calibración personalizadas así como juegos interactivos.

5.2. Complejidad en el control

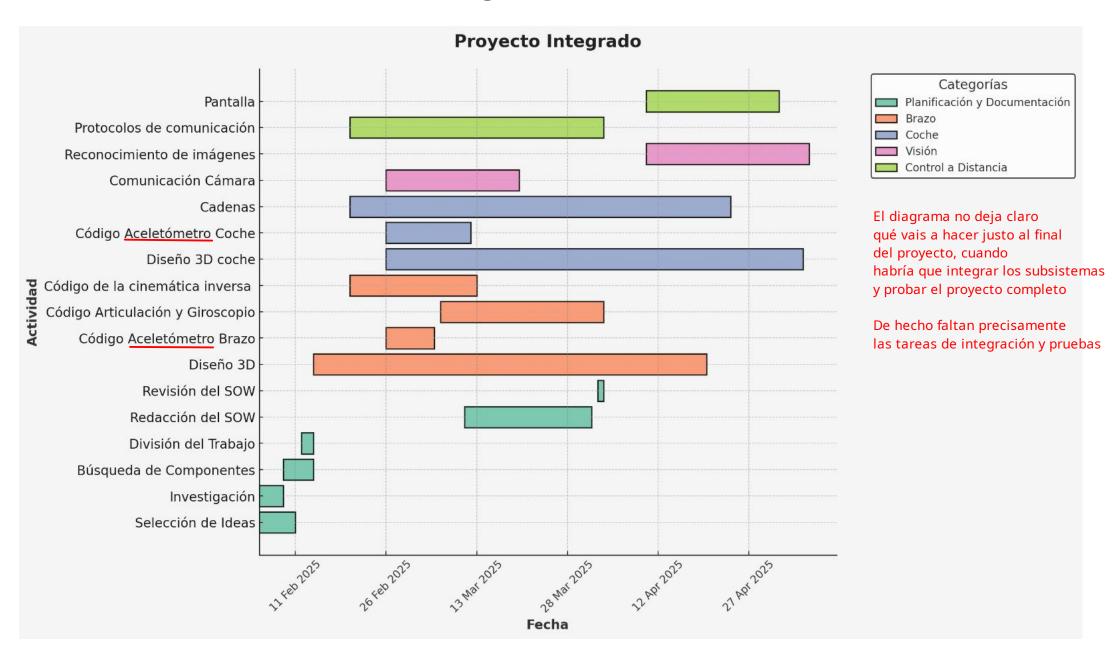

Si el control con gestos es muy complejo, los usuarios podrían enfrentar dificultades para adaptarse e interactuar con el sistema. Esto podría perjudicar la acogida de nuestro producto en el mercado. Por ello, se diseñará una interfaz amigable y se adaptarán los controles según la edad.

TABLA DE RIESGOS EN LA EXPERIENCIA DEL USUARIO

PROBLEMA	PROBABILIDAD	PERJUICIO	SOLUCIÓN
Curva de aprendizaje elevada	BAJA	MEDIO Un largo proceso de adaptación puede llevar al usuario a dejar de utilizar el producto y sustituirlo por alternativas más rápidas	Límites de velocidad y fuerza en el código
Complejidad del robot	MEDIA	BAJO Si el control del robot es muy complicado el usuario podría enfrentar dificultades para adaptarse e interactuar con el sistema Ambas situaciones supondrían una mala acogida de nuestro producto en el mercado, bajando el número de ventas y produciéndose pérdidas en la empresa.	Diseño amigable y animado para niños adaptando la sensibilidad del control dependiendo de la edad del usuario.

Este análisis de riesgos es espectacular. ¡Enhorabuena!

Diagrama de Gantt

CRITERIOS DE ACEPTACIÓN

El proyecto será aceptado cuando se cumplan los requisitos obligatorios estén implementados y verificados

Matriz de verificación

Roquisito	Nombre del	Ve	Verificación		ón	Nombre Prueba	Estado	
Requisito	requisito	1	Α	D	Т	Nombre 1 ruebu	Estudo	
F.1	Control gestual		X		×	test 2, test 3,test11, test 4, test 5,test 14, test 15	En curso	
P1.1	Latencia control		X	Х	X	test 9	En curso	
P1.2	Distancia de control				Х	test 17	Pendiente	
F.2	Transmisión de video en tiempo real		x	X	X	test 8, test 12	En curso	
P.2	Latencia transmisión de video				×	test 12	Pendiente	
F.3	Movilidad				Х	test 13	Pendiente	
P.3	Velocidad				Х	test 1, test 10	Pendiente	
D.1	Tamaño y peso	X	X			Diseño de dimensiones y peso	En curso	
D.2	Adaptación entorno			Х	Х	test 13	Pendiente	
O.1	Interfaz intuitiva		Х		Х	test 16	Pendiente	
O.2	Comunicación inalámbrica				X	test 6, test 7	En curso	
E.1	Consumo		Х		Х	test 18	Pendiente	
E.2	Autonomía				X	test 18	Pendiente	

Bien

Plan de pruebas

Número de test	1
Tipo de test	Prueba motores
Instalaciones donde se prueba	Taller de la asociación <u>ESIBot</u>
Item probado	Motor DC desconocido
Procedimiento y duración del test	Conectar una fuente de alimentación variable al motor e ir incrementando el valor de esta hasta que se observe el inicio de la rotación del eje. Continuar aumentando el voltaje hasta que la velocidad de giro se vuelva estable y la corriente consumida deje de aumentar significativamente
Duración de la campaña de test	10 minutos
Fecha de la campaña de test	13/02/2025
Test completado	Sí

Número de test	2
Tipo de test	Funcionamiento acelerómetros
Instalaciones donde se prueba	En cualquier lugar
Item probado	diferentes acelerómetros
Procedimiento y duración del test	Se probarán varios acelerómetros para verificar su funcionamiento y se seleccionara el más adecuado según necesidad y simplicidad
Duración de la campaña de test	1-2 horas
Fecha de la campaña de test	14/02/2025
Test completado	Sí

Número de test	3
Tipo de test	Funcionamiento acelerómetro coche
Instalaciones donde se prueba	Cualquier lugar
Item probado	Acelerómetro ADXL345 + coche prototipo
Procedimiento y duración del test	Se comprobará que el coche prototipo responde adecuadamente a las acciones del acelerómetro (izquierda,derecha, adelante y atrás).
Duración de la campaña de test	1-2 horas
Fecha de la campaña de test	14/02/2025
Test completado	Sí

Número de test	4
Tipo de test	Verificación de la cinemática
Instalaciones donde se prueba	Cualquier lugar con un ordenador con acceso a entorno de Matlab y simulink
Item probado	Ecuaciones de la Cinemática Inversa
Procedimiento y duración del test	Mediante diversas simulaciones, cálculos y gráficas se comprueba que la cinemática inversa es correcta
Duración de la campaña de test	2-3 horas
Fecha de la campaña de test	31/03/2025
Test completado	Sí (posible revisión)

Número de test	5
Tipo de test	Brazo en Bucle abierto (incrementos)
Instalaciones donde se prueba	En cualquier lugar
Item probado	Acelerómetros ADXL345 + brazo + Esp32
Procedimiento y duración del test	Se probaran los códigos correspondientes que calculan los incrementos de posición del brazo a partir del acelerómetros y se verá si los servos responden correctamente consiguiendo un movimiento robusto del brazo
Duración de la campaña de test	1-2 horas
Fecha de la campaña de test	11/04/2025
Test completado	No

Número de test	6
Tipo de test	Comunicación ESP-NOW acelerómetro coche
Instalaciones donde se prueba	En cualquier lugar disponiendo del hardware necesario
Item probado	2 Placas ESP32+ acelerómetro ADXL345
Procedimiento y duración del test	Usando un coche prototipo, comprobar que los datos que recibe el Esp del acelerómetro son enviados e interpretados correctamente por el Esp que controla el coche, consiguiendo los movimientos deseados
Duración de la campaña de test	3 horas
Fecha de la campaña de test	26/02/2025
Test completado	Sí

Número de test	7
Tipo de test	Comunicación ESP32 sistema global
Instalaciones donde se prueba	En cualquier lugar disponiendo del software necesario
Item probado	Acelerómetros ADXL345 + pantalla de control (por determinar)
Procedimiento y duración del test	Se comprobará que se interpretan los datos de los acelerómetros correctamente y según los modos de funcionamiento seleccionados en la pantalla de control. El movimiento coche vendrá dictado por uno de los acelerómetros, y el movimiento del brazo dictado por los dos acelerómetros a la vez
Duración de la campaña de test	3-4 horas
Fecha de la campaña de test	***
Test completado	No

Número de test	8
Tipo de test	Transmisión de video
Instalaciones donde se prueba	Cualquier lugar que disponga de wifi
Item probado	Esp32 cam
Procedimiento y duración del test	Se comprobará que se consigue ver lo que capta la cámara mediante el monitor de un PC
Duración de la campaña de test	1 hora
Fecha de la campaña de test	26/02/2024
Test completado	Sí

Número de test	9
Tipo de test	Latencia del control
Instalaciones donde se prueba	En cualquier lugar
Item probado	Sistema global
Procedimiento y duración del test	Se comprobará que el control y la comunicación es lo suficientemente rápida realizando diferentes movimientos en los acelerómetros y operando en los diferentes modos de operación
Duración de la campaña de test	1-2 horas
Test completado	No

Número de test	10
Tipo de test	Velocidad
Instalaciones donde se prueba	Cualquier lugar amplio
Item probado	Diseño coche final +motores
Procedimiento y duración del test	Se comprobará que el sistema es capaz de alcanzar la velocidad deseada
Duración de la campaña de test	30 minutos-1 hora
Fecha de la campaña de test	*** por determinar
Test completado	No

Número de test	11
Tipo de test	Prueba Servos
Instalaciones donde se prueba	En cualquier lugar
Item probado	Servos
Procedimiento y duración del test	Se verificará que los servos no están defectuosos
Duración de la campaña de test	10-30 min
Fecha de la campaña de test	10/04/2025
Test completado	No

Número de test	12
Tipo de test	Retransmisión de video en tiempo real
Instalaciones donde se prueba	En cualquier lugar
Item probado	Cámara por determinar
Procedimiento y duración del test	Se comprobará que se retransmite el video en tiempo real
Duración de la campaña de test	1-2 horas
Fecha de la campaña de test	*** por concretar
Test completado	No

Número de test	13
Tipo de test	Prueba movimiento en entornos variados
Instalaciones donde se prueba	Cualquier superficie que pueda oponer resistencia al movimiento.
Item probado	Conjunto Brazo-Coche; sistema de correas
Procedimiento y duración del test	Se probará el movimiento en distintos entornos, ya sea césped, arena, etc, del coche y del conjunto coche-brazo
Duración de la campaña de test	30-60 minutos
Fecha de la campaña de test	*** por concretar
Test completado	No

Número de test	14		
Tipo de test	Movimiento Brazo por cinemática inversa		
Instalaciones donde se prueba	En cualquier lugar		
Item probado	Brazo + acelerómetros + Esp32		
Procedimiento y duración del test	Se comprobará que los códigos correspondientes generan la señal de control adecuada para el desplazamiento del brazo del consiguiendo el movimiento deseado		
Duración de la campaña de test	1-3 horas		
Fecha de la campaña de test	*** por concretar		
Test completado	No		

Número de test	15	
Tipo de test	Control Gestual Global	
Instalaciones donde se prueba	Espacio abierto	
Item probado	Sistema final obtenido	
Procedimiento y duración del test	Se pondrá a prueba el sistema, evaluando si es capaz de desplazarse y hacer uso del brazo para coger objetos según sea indicado por los gestos (bucle abierto) o funcionando en bucle cerrado (especificación de referencias) y transmitir video	
Duración de la campaña de test	1-2 horas	
Fecha de la campaña de test	*** por concretar	
Test completado	No	

Número de test	16		
Tipo de test	Interacción usuario-sistema		
Instalaciones donde se prueba	En cualquier lugar con margen de movimiento del sistema		
Item probado	Sistema global final		
Procedimiento y duración del test	Se reunirán voluntarios dispuestos a probar el sistema, se les indicará el funcionamiento y se analizará cómo los usuarios son capaces de interactuar con el sistema		
Duración de la campaña de test	1-2 horas		
Fecha de la campaña de test	*** por concretar		
Test completado	No		

Número de test	17	
Tipo de test	Distancia de control	
Instalaciones donde se prueba	Espacio abierto	
Item probado	Sistema global	
Procedimiento y duración del test	Se comprobará el alcance de la comunicación	
Duración de la campaña de test	30 min	
Fecha de la campaña de test	por concretar	
Test completado	No	

Número de test	18		
Tipo de test	Consumo y autonomía		
Instalaciones donde se prueba	Espacio abierto		
Item probado	Baterías y alimentación del sistema		
Procedimiento y duración del test	Se hará un análisis del consumo en base a la alimentación necesaria y se pondrá a prueba la duración de la batería		
Duración de la campaña de test	2-3 horas		
Fecha de la campaña de test	por concretar		
Test completado	No		

Muy trabajado

MATERIAL Y PRESUPUESTO

Para diseñar y construir el prototipo, es fundamental prestar especial atención a los materiales requeridos y a los costos involucrados, así como a los procesos de fabricación de las piezas. La creación de un documento detallado que incluya tanto los materiales como el presupuesto resulta clave para asegurar una gestión eficiente y efectiva del proyecto.

Se ha intentado utilizar todos los materiales disponibles por los integrantes del grupo para reducir los costes todo lo posible.

Material necesario

A continuación, se presenta la lista de componentes y materiales definitivos elegidos para la construcción del prototipo.

- **Sensores:** estos sirven para proporcionar al robot la información necesaria del exterior para su correcto funcionamiento.
 - ESP32-CAM: este sensor se trata de un módulo de desarrollo basado en el microcontrolador ESP32, que integra una cámara OV2640 y capacidades de
 - conectividad mediante Wifi y Bluetooth. Este dispositivo es ideal para proyectos de visión artificial, videovigilancia, transmisión en tiempo real y reconocimiento de imágenes, ya que permite capturar fotos y videos con una resolución de hasta **1600x1200** píxeles.

• Acelerómetro ADXL345: es un sensor de movimiento en tres ejes (x, y, z) que permite medir la aceleración lineal. Es ampliamente utilizado en

aplicaciones de detección de movimiento, inclinación y vibración, ya que proporciona datos precisos de hasta **16 bits.** Gracias a su bajo consumo de energía y su capacidad de operar con voltajes de 3.3V, el ADXL345 es una opción versátil y eficiente.

• Pantalla: es la herramienta con la que se va a poder elegir que tipo de control se quiere en el robot, si manual o automático. Se trata de una pantalla de 320x240, ya que es un tamaño adecuado para llevar en la mano.

- **Actuadores:** Estos son los dispositivos que se encargan de convertir las señales eléctricas en acciones físicas. En este prototipo tenemos de distintos tipos:
 - Motores DC: Serán los encargados de mover las ruedas, son unos motores — capaces de dar una potencia de —.
 - Servomotores MG996: Se encargan del movimiento de las articulaciones del brazo robot. Se eligen unos servomotores — de 180° que permiten los movimientos necesarios del brazo.

 Motor paso a paso: se utiliza un motor paso a paso para el movimiento de rotación de la base del robot, permitiendo un mejor control de la posición de este.

• Impresión 3D: Gran parte de las piezas tanto del brazo como del coche se han realizado mediante impresión 3D, permitiendo el diseño completo de las piezas y el tamaño de estas.

Además, también se han diseñado con impresión 3D las cadenas para un mejor agarre y movilidad en todo tipo de terreno del robot.

• **Procesador:** Para el proyecto vamos a utilizar el microcontrolador **ESP32**, conocido por su capacidad de conectividad Wifi y Bluetooth integrada. Cuenta con un procesador dual-core de **32 bits**, funciona a una frecuencia de hasta **240 MHz** y dispone de memoria **RAM** y almacenamiento **Flash** suficiente para ejecutar tareas complejas.

• **Batería:** Es necesaria una batería suficientemente ligera y pequeña para que no sea difícil de incorporar en el prototipo pero sea suficientemente potente para suministrar energía a toda las piezas.

Presupuesto

A continuación, se presenta el desglose del presupuesto inicial del proyecto.

MATERIAL	CANTIDAD NECESARIA	CANTIDAD OBTENIDA	FECHA	MODO DE OBTENCIÓN	PRECIO	
ESP32	2	4	-	Propio	2.90€	
ESP32-CAM	1	2	-	Propio	3.89€	
ADXL345	2	3	-	Propio	1.47€	
BATERÍA	3	5	-	Propio		
PLA	-	-	-	Propio		
IMPRESORA 3D	1	2	-	Propio		
SERVOS	4	4	27/3/25	Comprado	3.89€	
PANTALLA	1	1	02/4/25	Comprado	5.99€	
MOTOR DC	2	2	-	Propio		
STEP MOTOR	1	2	-	Propio	1.49€	
TOTAL COMPRADO:21.55 €						
TOTAL ESTIMADO: 46.83 €						

REFERENCIAS

- [1] International Federation of Robotics, "Service Robots Record: Sales Worldwide Up 32%", International Federation of Robotics, 2024. [Online]. Available: https://ifr.org/ifr-press-releases/news/service-robots-record-sales-worldwide-up-32
- [2] A. Ahmed, U. Iliyasu, U. F. Musa, A. B. Ishaq, y M. A. Baballe, "Advantages and disadvantages of using bomb disposal robots", *Global J. Res. Eng. Comput. Sci.*, vol. 4, no. 6, pp. 50-56, Nov.-Dec. 2024, doi: 10.5281/zenodo.14180678. [Online]. Available: https://girpublication.com/gjrecs/
- [3] Sphericals Insights, "Global Defense Robotics Market Insights Forecasts to 2033", Sphericals Insights, [Online]. Available: https://www.sphericalinsights.com/reports/defense-robotics-market
- [4] Wikipedia contributors, "Wheelbarrow (robot)," Wikipedia, The Free Encyclopedia, 2025. [Online]. Available: https://en.wikipedia.org/wiki/Wheelbarrow (robot)
- [5] O. F Áviles Sánchez y O. García-Bedoya, "VALI: Desarrollo y Evolución de un Robot Para Neutralizar Explosivos", [Online]. Available: https://expeditiorepositorio.utadeo.edu.co/bitstream/handle/20.500.12010/8658/10595.pdf?sequence=1
- [6] "Aplicaciones de un controlador Bluetooth en Robótica: Capítulo 3. El WiiRemote." BiblioUS, Universidad de Sevilla. Disponible en: https://biblus.us.es/bibling/proyectos/abreproy/11526/fichero/Aplicaciones+de+un+controlador+Bluetooth+en+Rob%C3%B3tica+%252FCapitulo+3.+El+WiiRemote.pdf
- [7] S. -O. Shin, D. Kim and Y. -H. Seo, "Controlling Mobile Robot Using IMU and EMG Sensor-Based Gesture Recognition," *2014 Ninth International Conference on Broadband and Wireless Computing, Communication and Applications*, Guangdong, China, 2014, pp. 554-557, doi: 10.1109/BWCCA.2014.145.
- [8] Kawashimaken, "wiimote-eps32-robot-arm," GitHub, disponible en: https://github.com/kawashimaken/wiimote-eps32-robot-arm
- [9]"Cameras for Robot Vision": Disponible en: https://www.roboticsbook.org/S53 diffdrive sensing.html

Como comenté en el estado del arte, se echa en falta alguna patente

Muy buen documento, ¡buen trabajo!